• 제목/요약/키워드: Internet-inaccessible Area

검색결과 3건 처리시간 0.016초

콘텐츠추적정보 관리 시뮬레이터 (Simulator for Management of Tracking Information of Digital Content)

  • 이승원;최훈
    • 한국콘텐츠학회논문지
    • /
    • 제12권6호
    • /
    • pp.48-55
    • /
    • 2012
  • 스마트폰이나 태블릿 PC와 같은 모바일 디바이스에 이용되는 디지털 콘텐츠 수가 IT 산업 발달과 함께 급속도로 증가하고 있다. 이와 함께 디지털 콘텐츠 관리 방법에 대한 연구도 활발히 진행되고 있다. 기존 연구에서 인터넷 불가능지역에서 모바일 디바이스간에 디지털 콘텐츠 활용 정보를 효율적으로 관리할 수 있는 CTI가 정의되었으며, 콘텐츠가 전달될 때 마다 생성되는 CTI에 대한 관리, 오버헤드 감소, 가능한 빠른 시간에 많은 CTI를 수집할 수 있는 기술 등과 같은 콘텐츠추적정보 관리 방법을 제안하였다. 본 논문는 콘텐츠추적정보 관리 방법을 검증하고, 성능을 분석할 수 있는 시뮬레이터를 설계, 구현하였다. 이 시뮬레이터는 인터넷 접근이 안되는 환경에서 모바일 디바이스의 이동에 따른 콘텐츠 이동을 가상으로 시뮬레이션하고, 콘텐츠추적정보 관리 방법에 대한 효율적인 동기화 오버헤드 감소와 여러 이점들을 검증하였다.

THE LAND COVER MAPPING IN NORTH KOREA USING MODIS IMAGE;THE CLASSIFICATION ACCURACY ENHANCEMENT FOR INACCESSIBLE AREA USING GOOGLE EARTH

  • Cha, Su-Young;Park, Chong-Hwa
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2007년도 Proceedings of ISRS 2007
    • /
    • pp.341-344
    • /
    • 2007
  • A major obstacle to classify and validate Land Cover maps is the high cost of generating reference data or multiple thematic maps for subsequent comparative analysis. In case of inaccessible area such as North Korea, the high resolution satellite imagery may be used as in situ data so as to overcome the lack of reliable reference data. The objective of this paper is to investigate the possibility of utilizing QuickBird (0.6m) of North Korea obtained from Google Earth data provided thru internet. Monthly NDVI images of nine months from the summer of 2004 were classified into L=54 cluster using ISODATA algorithm, and these L clusters were assigned to 7 classes; coniferous forest, deciduous forest, mixed forest, paddy field, dry field, water and built-up area. The overall accuracy and Kappa index were 85.98% and 0.82, respectively, which represents about 10% point increase of classification accuracy than our previous study based on GCP point data around North Korea. Thus we can conclude that Google Earth may be used to substitute the traditional in situ data collection on the site where the accessibility is severely limited.

  • PDF

An indoor localization system for estimating human trajectories using a foot-mounted IMU sensor and step classification based on LSTM

  • Ts.Tengis;B.Dorj;T.Amartuvshin;Ch.Batchuluun;G.Bat-Erdene;Kh.Temuulen
    • International journal of advanced smart convergence
    • /
    • 제13권1호
    • /
    • pp.37-47
    • /
    • 2024
  • This study presents the results of designing a system that determines the location of a person in an indoor environment based on a single IMU sensor attached to the tip of a person's shoe in an area where GPS signals are inaccessible. By adjusting for human footfall, it is possible to accurately determine human location and trajectory by correcting errors originating from the Inertial Measurement Unit (IMU) combined with advanced machine learning algorithms. Although there are various techniques to identify stepping, our study successfully recognized stepping with 98.7% accuracy using an artificial intelligence model known as Long Short-Term Memory (LSTM). Drawing upon the enhancements in our methodology, this article demonstrates a novel technique for generating a 200-meter trajectory, achieving a level of precision marked by a 2.1% error margin. Indoor pedestrian navigation systems, relying on inertial measurement units attached to the feet, have shown encouraging outcomes.