• Title/Summary/Keyword: Internet routing

Search Result 642, Processing Time 0.022 seconds

Assessing Resilience of Inter-Domain Routing System under Regional Failures

  • Liu, Yujing;Peng, Wei;Su, Jinshu;Wang, Zhilin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.4
    • /
    • pp.1630-1642
    • /
    • 2016
  • Inter-domain routing is the most critical function of the Internet. The routing system is a logical network relying on the physical infrastructure with geographical characteristics. Nature disasters or disruptive accidents such as earthquakes, cable cuts and power outages could cause regional failures which fail down geographically co-located network nodes and links, therefore, affect the resilience of inter-domain routing system. This paper presents a model for regional failures in inter-domain routing system called REFER for the first time. Based on REFER, the resilience of the inter-domain routing system could be evaluated on a finer level of the Internet, considering different routing policies of intra-domain and inter-domain routing systems. Under this model, we perform simulations on an empirical topology of the Internet with geographical characteristics to simulate a regional failure locating at a city with important IXP (Internet eXchange Point). Results indicate that the Internet is robust under a city-level regional failure. The reachability is almost the same after the failure, and the reroutings occur at the edge of the Internet, hardly affecting the core of inter-domain routing system.

On Inferring and Characterizing Internet Routing Policies

  • Wang, Feng;Gao, Lixin
    • Journal of Communications and Networks
    • /
    • v.9 no.4
    • /
    • pp.350-355
    • /
    • 2007
  • Border gateway protocol allows autonomous systems(ASes) to apply diverse routing policies for selecting routes and for propagating reachability information to other ASes. Although a significant number of studies have been focused on the Internet topology, little is known about what routing policies network operators employ to configure their networks. In this paper, we infer and characterize routing policies employed in the Internet. We find that routes learned from customers are preferred over those from peers and providers, and those from peers are typically preferred over those from providers. We present an algorithm for inferring and characterizing export policies. We show that ASes announce their prefixes to a selected subset of providers to perform traffic engineering for incoming traffic. We find that the selective announcement routing policies imply that there are much less available paths in the Internet than shown in the AS connectivity graph, and can make the Internet extremely sensitive to failure events. We hope that our findings will help network operators in designing routing policies.

Practical Swarm Optimization based Fault-Tolerance Algorithm for the Internet of Things

  • Luo, Shiliang;Cheng, Lianglun;Ren, Bin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.3
    • /
    • pp.735-748
    • /
    • 2014
  • The fault-tolerance routing problem is one of the most important issues in the application of the Internet of Things, and has been attracting growing research interests. In order to maintain the communication paths from source sensors to the macronodes, we present a hybrid routing scheme and model, in which alternate paths are created once the previous routing is broken. Then, we propose an improved efficient and intelligent fault-tolerance algorithm (IEIFTA) to provide the fast routing recovery and reconstruct the network topology for path failure in the Internet of Things. In the IEIFTA, mutation direction of the particle is determined by multi-swarm evolution equation, and its diversity is improved by the immune mechanism, which can improve the ability of global search and improve the converging rate of the algorithm. The simulation results indicate that the IEIFTA-based fault-tolerance algorithm outperforms the EARQ algorithm and the SPSOA algorithm due to its ability of fast routing recovery mechanism and prolonging the lifetime of the Internet of Things.

Design of WQPOA Routing Algorithm for Next Generation Internet Services (차세대 인터넷을 위한 QoS 기반 라우팅 알고리즘)

  • Son, Seung-Won;O, Chang-Seok
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.11S
    • /
    • pp.3229-3242
    • /
    • 1999
  • At recent, the Internet is evolving into the directions which is capable of incorporating stream-type services such as voice and video services due to the remarkable growth of WWW service and the development of new multimedia application services. However, the existing Internet can only support a best-effort delivery model and thus it is difficult to satisfy these requirements as well as to provide the QoS beyond a certain degree. Accordingly, it is imperative to develop QoS-based routing algorithm in order to allow flexible routing by the Internet user's QoS demand and to be applied into wide area networks. In this paper, we presented new routing algorithms for next generation Internet services and made performance evaluations. The proposed algorithms allow the routing by the user's QoS demand level in order to provide the diverse Internet application services based on ATM network environment that is expected to play a role as an infrastructure of next Generation Internet Services.

  • PDF

Practical Swarm Optimization based Fault-Tolerance Algorithm for the Internet of Things

  • Luo, Shiliang;Cheng, Lianglun;Ren, Bin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.4
    • /
    • pp.1178-1191
    • /
    • 2014
  • The fault-tolerance routing problem is one of the most important issues in the application of the Internet of Things, and has been attracting growing research interests. In order to maintain the communication paths from source sensors to the macronodes, we present a hybrid routing scheme and model, in which alternate paths are created once the previous routing is broken. Then, we propose an improved efficient and intelligent fault-tolerance algorithm (IEIFTA) to provide the fast routing recovery and reconstruct the network topology for path failure in the Internet of Things. In the IEIFTA, mutation direction of the particle is determined by multi-swarm evolution equation, and its diversity is improved by the immune mechanism, which can improve the ability of global search and improve the converging rate of the algorithm. The simulation results indicate that the IEIFTA-based fault-tolerance algorithm outperforms the EARQ algorithm and the SPSOA algorithm due to its ability of fast routing recovery mechanism and prolonging the lifetime of the Internet of Things.

Adaptive Differentiated Integrated Routing Scheme for GMPLS-based Optical Internet

  • Wei, Wei;Zeng, Qingji;Ye, Tong;Lomone, David
    • Journal of Communications and Networks
    • /
    • v.6 no.3
    • /
    • pp.269-279
    • /
    • 2004
  • A new online multi-layer integrated routing (MLIR) scheme that combines IP (electrical) layer routing with WDM (optical) layer routing is investigated. It is a highly efficient and cost-effective routing scheme viable for the next generation integrated optical Internet. A new simplified weighted graph model for the integrated optical Internet consisted of optical routers with multi-granularity optical-electrical hybrid switching capability is firstly proposed. Then, based on the proposed graph model, we develop an online integrated routing scheme called differentiated weighted fair algorithm (DWFA) employing adaptive admission control (routing) strategies with the motivation of service/bandwidth differentiation, which can jointly solve multi-layer routing problem by simply applying the minimal weighted path computation algorithm. The major objective of DWFA is fourfold: 1) Quality of service (QoS) routing for traffic requests with various priorities; 2) blocking fairness for traffic requests with various bandwidth granularities; 3) adaptive routing according to the policy parameters from service provider; 4) lower computational complexity. Simulation results show that DWFA performs better than traditional overlay routing schemes such as optical-first-routing (OFR) and electrical-first-routing (EFR), in terms of traffic blocking ratio, traffic blocking fairness, average traffic logical hop counts, and global network resource utilization. It has been proved that the DWFA is a simple, comprehensive, and practical scheme of integrated routing in optical Internet for service providers.

Review of today's internet architecture problems (인터넷 주소 구조의 문제점에 관한 연구)

  • In, Min-Kyo;You, Tae-Wan;Lee, Seung-Yun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.819-821
    • /
    • 2007
  • The explosive growth of the Internet brought serious problems to the Internet routing infrastructure. Especially scaling problems is recognized more seriously. The ever increasing user population, as well as multiple other factors including multi-homing, traffic engineering, and policy routing, have been driving the growth of Default Free Zone (DFZ) routing table size at an alarming rate. While it has been long recognized that the existing routing architecture may have serious scalability problems, effective solutions have yet to be identified, developed, and deployed. Recently, several attempts for finding the concrete problems are made. Especially the report of the routing and addressing workshop which the IAB (Internet Architecture Board) held on 2006 is described the problems of the current internet in detail. This document describes those problems and introduces the related activity to solve the problems.

  • PDF

Space-Stretch Tradeoff Optimization for Routing in Internet-Like Graphs

  • Tang, Mingdong;Zhang, Guoqiang;Liu, Jianxun
    • Journal of Communications and Networks
    • /
    • v.14 no.5
    • /
    • pp.546-553
    • /
    • 2012
  • Compact routing intends to achieve good tradeoff between the routing path length and the memory overhead, and is recently considered as a main alternative to overcome the fundamental scaling problems of the Internet routing system. Plenty of studies have been conducted on compact routing, and quite a few universal compact routing schemes have been designed for arbitrary network topologies. However, it is generally believed that specialized compact routing schemes for peculiar network topologies can have better performance than universal ones. Studies on complex networks have uncovered that most real-world networks exhibit power-law degree distributions, i.e., a few nodes have very high degrees while many other nodes have low degrees. High-degree nodes play the crucial role of hubs in communication and inter-networking. Based on this fact, we propose two highest-degree landmark based compact routing schemes, namely HDLR and $HDLR^+$. Theoretical analysis on random power-law graphs shows that the two schemes can achieve better space-stretch trade-offs than previous compact routing schemes. Simulations conducted on random power-law graphs and real-world AS-level Internet graph validate the effectiveness of our schemes.

Multi-path Routing Policy for Content Distribution in Content Network

  • Yang, Lei;Tang, Chaowei;Wang, Heng;Tang, Hui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.5
    • /
    • pp.2379-2397
    • /
    • 2017
  • Content distribution technology, which routes content to the cache servers, is considered as an effective method to reduce the response time of the user requests. However, due to the exponential increases of content traffic, traditional content routing methods suffer from high delay and consequent inefficient delivery. In this paper, a content selection policy is proposed, which combines the histories of cache hit and cache hit rate to collaboratively determine the content popularity. Specifically, the CGM policy promotes the probability of possible superior paths considering the storage cost and transmission cost of content network. Then, the content routing table is updated with the proportion of the distribution on the paths. Extensive simulation results show that our proposed scheme improves the content routing and outperforms existing routing schemes in terms of Internet traffic and access latency.

An Impact of Addressing Schemes on Routing Scalability

  • Ma, Huaiyuan;Helvik, Bjarne E.;Wittner, Otto J.
    • Journal of Communications and Networks
    • /
    • v.13 no.6
    • /
    • pp.602-611
    • /
    • 2011
  • The inter-domain routing scalability issue is a major challenge facing the Internet. Recent wide deployments of multihoming and traffic engineering urge for solutions to this issue. So far, tunnel-based proposals and compact routing schemes have been suggested. An implicit assumption in the routing community is that structured address labels are crucial for routing scalability. This paper first systematically examines the properties of identifiers and address labels and their functional differences. It develops a simple Internet routing model and shows that a binary relation T defined on the address label set A determines the cardinality of the compact label set L. Furthermore, it is shown that routing schemes based on flat address labels are not scalable. This implies that routing scalability and routing stability are inherently related and must be considered together when a routing scheme is evaluated. Furthermore, a metric is defined to measure the efficiency of the address label coding. Simulations show that given a 3000-autonomous system (AS) topology, the required length of address labels in compact routing schemes is only 9.12 bits while the required length is 10.64 bits for the Internet protocol (IP) upper bound case. Simulations also show that the ${\alpha}$ values of the compact routing and IP routing schemes are 0.80 and 0.95, respectively, for a 3000-AS topology. This indicates that a compact routing scheme with necessary routing stability is desirable. It is also seen that using provider allocated IP addresses in multihomed stub ASs does not significantly reduce the global routing size of an IP routing system.