• Title/Summary/Keyword: Internet access networks

Search Result 549, Processing Time 0.024 seconds

QoS Provisioning in Wireless Body Area Networks: A Review on MAC Aspects

  • Thapa, Anup;Shin, Seok-Joo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.5
    • /
    • pp.1267-1285
    • /
    • 2012
  • Wireless Body Area Networks (WBANs) deal with variety of healthcare services with diverse Quality of Service (QoS) requirements. However, QoS handling is a challenging problem in such networks. In general, QoS related problems can be addressed from different layers in the networking protocol suite. Design of an efficient QoS aware Medium Access Control (MAC) protocol can address this problem in MAC layer. This paper analyzes the QoS requirements of WBAN, identifies the requisites of QoS handling system, and outlines the trends that are being followed for its advancement with focus on QoS issues at MAC layer. We review some prior works, compare them, and analyze the current research concerned with problem of providing QoS in WBAN. We also explore some open issues and discuss them.

Adaptive GTS allocation scheme with applications for real-time Wireless Body Area Sensor Networks

  • Zhang, Xiaoli;Jin, Yongnu;Kwak, Kyung Sup
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.5
    • /
    • pp.1733-1751
    • /
    • 2015
  • The IEEE 802.15.4 standard not only provides a maximum of seven guaranteed time slots (GTSs) for allocation within a superframe to support time-critical traffic, but also achieves ultralow complexity, cost, and power in low-rate and short-distance wireless personal area networks (WPANs). Real-time wireless body area sensor networks (WBASNs), as a special purpose WPAN, can perfectly use the IEEE 802. 15. 4 standard for its wireless connection. In this paper, we propose an adaptive GTS allocation scheme for real-time WBASN data transmissions with different priorities in consideration of low latency, fairness, and bandwidth utilization. The proposed GTS allocation scheme combines a weight-based priority assignment algorithm with an innovative starvation avoidance scheme. Simulation results show that the proposed method significantly outperforms the existing GTS implementation for the traditional IEEE 802.15.4 in terms of average delay, contention free period bandwidth utilization, and fairness.

End-to-End Delay Analysis of a Dynamic Mobile Data Traffic Offload Scheme using Small-cells in HetNets

  • Kim, Se-Jin
    • Journal of Internet Computing and Services
    • /
    • v.22 no.5
    • /
    • pp.9-16
    • /
    • 2021
  • Recently, the traffic volume of mobile communications increases rapidly and the small-cell is one of the solutions using two offload schemes, i.e., local IP access (LIPA) and selected IP traffic offload (SIPTO), to reduce the end-to-end delay and amount of mobile data traffic in the core network (CN). However, 3GPP describes the concept of LIPA and SIPTO and there is no decision algorithm to decide the path from source nodes (SNs) to destination nodes (DNs). Therefore, this paper proposes a dynamic mobile data traffic offload scheme using small-cells to decide the path based on the SN and DN, i.e., macro user equipment, small-cell user equipment (SUE), and multimedia server, and type of the mobile data traffic for the real-time and non-real-time. Through analytical models, it is shown that the proposed offload scheme outperforms the conventional small-cell network in terms of the delay of end-to-end mobile data communications and probability of the mobile data traffic in the CN for the heterogeneous networks.

Achievable Power Allocation Interval of Rate-lossless non-SIC NOMA for Asymmetric 2PAM

  • Chung, Kyuhyuk
    • International journal of advanced smart convergence
    • /
    • v.10 no.2
    • /
    • pp.1-9
    • /
    • 2021
  • In the Internet-of-Things (IoT) and artificial intelligence (AI), complete implementations are dependent largely on the speed of the fifth generation (5G) networks. However, successive interference cancellation (SIC) in non-orthogonal multiple access (NOMA) of the 5G mobile networks can be still decoding latency and receiver complexity in the conventional SIC NOMA scheme. Thus, in order to reduce latency and complexity of inherent SIC in conventional SIC NOMA schemes, we propose a rate-lossless non-SIC NOMA scheme. First, we derive the closed-form expression for the achievable data rate of the asymmetric 2PAM non-SIC NOMA, i.e., without SIC. Second, the exact achievable power allocation interval of this rate-lossless non-SIC NOMA scheme is also derived. Then it is shown that over the derived achievable power allocation interval of user-fairness, rate-lossless non-SIC NOMA can be implemented. As a result, the asymmetric 2PAM could be a promising modulation scheme for rate-lossless non-SIC NOMA of 5G networks, under user-fairness.

Unipodal 2PAM NOMA without SIC: toward Super Ultra-Low Latency 6G

  • Chung, Kyuhyuk
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.1
    • /
    • pp.69-81
    • /
    • 2021
  • While the fifth generation (5G) and beyond 5G (B5G) mobile communication networks are being rolled over the globe, several world-wide companies have already started to prepare the sixth generation (6G). Such 6G mobile networks targets ultra-reliable low-latency communication (URLLC). In this paper, we challenge to reduce the inherent latency of existing non-orthogonal multiple access (NOMA) in 5G networks of massive connectivity. First, we propose the novel unipodal binary pulse amplitude modulation (2PAM) NOMA, especially without SIC, which greatly reduce the latency in existing NOMA. Then, the achievable data rates for the unipodal 2PAM NOMA are derived. It is shown that for unequal gain channels, the sum rate of the unipodal 2PAM NOMA is comparable to that of the standard 2PAM NOMA, whereas for equal gain channels, the sum rate of the unipodal 2PAM NOMA is superior to that of the standard 2PAM NOMA. In result, the unipodal 2PAM could be a promising modulation scheme for NOMA systems toward 6G.

Correlated Intelligent Reflecting Surface and Improved BER Performance of NOMA

  • Chung, Kyuhyuk
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.3
    • /
    • pp.79-84
    • /
    • 2022
  • Towards the sixth generation (6G) mobile networks, spectrum and energy efficiency of non-orthogonal multiple access (NOMA) transmissions in the fifth generation (5G) wireless system have been improved by intelligent reflecting surface (IRS) technologies. However, the reflecting devices of an IRS tend to be correlated because they are placed close on the surface each other. In this paper, we present an analysis on the correlated IRS in NOMA cellular networks. Specifically, we consider the bit-error rate (BER) performances for correlated-IRS in NOMA networks. First, based on the central limit theorem, we derive an approximate analytical expression of the BER for correlated-IRS NOMA systems, by using the second moment of the channel gain. Then we validate the proposed analytical BER by Monte Carlo simulations, and show that they are in good agreement. In addition, we also show numerically the BER improvement of the correlated-IRS NOMA over the conventional independent-IRS NOMA.

Bridging the Connectivity Gap Within a PLC-Wi-Fi Hybrid Networks

  • Shafi Ullah Khan;Taewoong Hwang;In-Soo Koo
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.1
    • /
    • pp.395-402
    • /
    • 2023
  • The implementation of a hybrid network utilizing Power Line Communication (PLC) and Wi-Fi technologies has been demonstrated to improve signal strength and coverage in areas with poor connectivity due to internet shadow areas. In this study we strategically positioned Wi-Fi relays and utilized the capabilities of PLC technology to significantly improve signal strength and coverage in areas with poor connectivity. We also analyzed the effects of metallic obstacles on Wi-Fi signal propagation and proposed a solution to strengthen the signal enough to pass through them. Our experiment demonstrated the feasibility and potential of using this hybrid network in industrial scenarios for real-time data transmission. Overall, the results suggest that the use of PLC and Wi-Fi hybrid networks can be a cost-effective and efficient solution for overcoming internet connectivity challenges and has the potential to provide high-speed internet access to areas with unreliable signals.

Interconnection Fee or Access fee? - Focusing on ISP-CP settlement dispute - (상호접속료인가, 망 이용대가인가? - ISP-CP간 망 연결 대가 분쟁 중심으로 -)

  • Cho, Dae-Keun
    • Journal of Internet Computing and Services
    • /
    • v.21 no.5
    • /
    • pp.9-20
    • /
    • 2020
  • This study redefines the networks' connection behaviors and the terms confusion over the settlement in Netflix-SK Broadband's dispute through domestic and foreign legal references. Conflict parties, academics and the media use the terms "interconnection fee" or "Access fee" without uniformity, and in some cases mixes for strategic purposes. The use of different terms for the same phenomenon (or vice versa) has a high need for research in that it makes it difficult to reach a unified approach to the problem, to discuss it productively and rationally, and, moreover, to resolve disputes. Therefore, this study cross-referenced/analyzed terms related to network utilization and connectivity, namely "Use", "Access", "Interconnection" and thus cost-related terms as a counter-pay. In addition, it suggests that interconnection fees and access fees should be used separately, and allows them to function as a starting point in resolving future ICT sector issues. As a result of this study, the price against the network access/use between Netflix and SK Broadband is access fee or retail price, and proposes to be used uniformly in the term "interconnection fee" only for fees incurred in interconnection between ISPs that possess or operate networks.

A Receiver-Aided Seamless And Smooth Inter-RAT Handover At Layer-2

  • Liu, Bin;Song, Rongfang;Hu, Haifeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.10
    • /
    • pp.4015-4033
    • /
    • 2015
  • The future mobile networks consist of hyper-dense heterogeneous and small cell networks of same or different radio access technologies (RAT). Integrating mobile networks of different RATs to provide seamless and smooth mobility service will be the target of future mobile converged network. Generally, handover from high-speed networks to low-speed networks faces many challenges from application perspective, such as abrupt bandwidth variation, packet loss, round trip time variation, connection disruption, and transmission blackout. Existing inter-RAT handover solutions cannot solve all the problems at the same time. Based on the high-layer convergence sublayer design, a new receiver-aided soft inter-RAT handover is proposed. This soft handover scheme takes advantage of multihoming ability of multi-mode mobile station (MS) to smooth handover procedure. In addition, handover procedure is seamless and applicable to frequent handover scenarios. The simulation results conducted in UMTS-WiMAX converged network scenario show that: in case of TCP traffics for handover from WiMAX to UMTS, not only handover latency and packet loss are eliminated completely, but also abrupt bandwidth/wireless RTT variation is smoothed. These delightful features make this soft handover scheme be a reasonable candidate of mobility management for future mobile converged networks.

Applications of Intelligent Radio Technologies in Unlicensed Cellular Networks - A Survey

  • Huang, Yi-Feng;Chen, Hsiao-Hwa
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.7
    • /
    • pp.2668-2717
    • /
    • 2021
  • Demands for high-speed wireless data services grow rapidly. It is a big challenge to increasing the network capacity operating on licensed spectrum resources. Unlicensed spectrum cellular networks have been proposed as a solution in response to severe spectrum shortage. Licensed Assisted Access (LAA) was standardized by 3GPP, aiming to deliver data services through unlicensed 5 GHz spectrum. Furthermore, the 3GPP proposed 5G New Radio-Unlicensed (NR-U) study item. On the other hand, artificial intelligence (AI) has attracted enormous attention to implement 5G and beyond systems, which is known as Intelligent Radio (IR). To tackle the challenges of unlicensed spectrum networks in 4G/5G/B5G systems, a lot of works have been done, focusing on using Machine Learning (ML) to support resource allocation in LTE-LAA/NR-U and Wi-Fi coexistence environments. Generally speaking, ML techniques are used in IR based on statistical models established for solving specific optimization problems. In this paper, we aim to conduct a comprehensive survey on the recent research efforts related to unlicensed cellular networks and IR technologies, which work jointly to implement 5G and beyond wireless networks. Furthermore, we introduce a positioning assisted LTE-LAA system based on the difference in received signal strength (DRSS) to allocate resources among UEs. We will also discuss some open issues and challenges for future research on the IR applications in unlicensed cellular networks.