• Title/Summary/Keyword: Internet Protocols

Search Result 693, Processing Time 0.023 seconds

PRESSURE BASED ROUTING PROTOCOL FOR UNDERWATER WIRELESS SENSOR NETWORKS: A SURVEY

  • Khasawneh, Ahmad;Bin Abd Latiff, Muhammad Shafie;Chizari, Hassan;Tariq, MoeenUddin;Bamatraf, Abdullah
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.2
    • /
    • pp.504-527
    • /
    • 2015
  • Underwater wireless sensor networks (UWSNs) are similar to the terrestrial sensor networks. Nevertheless, there are different characteristics among them such as low battery power, limited bandwidth and high variable propagation delay. One of the common major problems in UWSNs is determining an efficient and reliable routing between the source node and the destination node. Therefore, researchers tend to design efficient protocols with consideration of the different characteristics of underwater communication. Furthermore, many routing protocols have been proposed and these protocols may be classified as location-based and location-free routing protocols. Pressure-based routing protocols are a subcategory of the location-free routing protocols. This paper focuses on reviewing the pressure-based routing protocols that may further be classified into non-void avoidance protocols and void avoidance protocols. Moreover, non-void avoidance protocols have been classified into single factor based and multi factor based routing protocols. Finally, this paper provides a comparison between these protocols based on their features, performance and simulation parameters and the paper concludes with some future works on which further study can be conducted.

The Communication Protocol Model for Semiconductor Equipment with Internet of Things (사물인터넷을 이용한 반도체 장비 통신 프로토콜 모델)

  • Kim, Doo Yong;Kim, Kiwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.4
    • /
    • pp.40-45
    • /
    • 2019
  • The smart factory has developed with the help of several technologies such as automation, artificial intelligence, big data, smart sensors and communication protocols. The Internet of things(IOT) among communication protocols has become the key factor for the seamless integration of various manufacturing equipment. Therefore, it is important that the IOT cooperate with the standards of communication protocols proposed by the SEMI in the semiconductor industry. In this paper, we suggest a novel reference model of the communication protocols for semiconductor equipment by introducing an IOT service layer. With the IOT service layer, we can use the functions and the additional services provided by the IOT standards that give the inter-operability between factory machines and host computers. We implement the standard of the communication protocols for semiconductor equipment with the IOT service layer by using ns3 simulator. It concludes that it is necessary to provide the platform for the IOT service layer to deploy efficiently the proposed reference model of the communication protocols.

Analysis of MANET Protocols Using OPNET (OPNET을 이용한 MANET 프로토콜 분석)

  • Zhang, Xiao-Lei;Wang, Ye;Ki, Jang-Geun;Lee, Kyu-Tae
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.4
    • /
    • pp.87-97
    • /
    • 2009
  • A Mobile Ad hoc Network (MANET) is characterized by multi-hop wireless connectivity, frequently changing network topology with mobile nodes and the efficiency of the dynamic routing protocol plays an important role in the performance of the network. In this paper, the performance of five routing protocols for MANET is compared by using OPNET modeler: AODV, DSR, GRP, OLSR and TORA. The various performance metrics are examined, such as packet delivery ratio, end-to-end delay and routing overhead with varying data traffic, number of nodes and mobility. In our simulation results, OLSR shows the best performance in terms of data delivery ratio in static networks, while AODV has the best performance in mobile networks with moderate data traffic. When comparing proactive protocols (OLSR, GRP) and reactive protocols (AODV, DSR) with varying data traffic in the static networks, proactive protocols consistently presents almost constant overhead while the reactive protocols show a sharp increase to some extent. When comparing each of proactive protocols in static and mobile networks, OLSR is better than GRP in the delivery ratio while overhead is more. As for reactive protocols, DSR outperforms AODV under the moderate data traffic in static networks because it exploits caching aggressively and maintains multiple routes per destination. However, this advantage turns into disadvantage in high mobility networks since the chance of the cached routes becoming stale increases.

  • PDF

A novel routing protocol for cognitive radio networks with cooperation process

  • Kim, Sunwoo;Pyeon, Dohoo;Jang, Ingook;Yoon, Hyunsoo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.11
    • /
    • pp.3860-3875
    • /
    • 2014
  • Cognitive radio networks (CRNs) are composed of mobile users who can use multiple spectrum bands for communication. CRNs allow unlicensed users (called cognitive users) to efficiently utilize unused licensed spectrums without interfering with communications of licensed users (called primary users). The main goals of CRNs are to mitigate spectrum saturation and to improve spectrum utilization. This paper introduces state-of-the-art routing protocols for CRNs and addresses some limitations of these protocols. To resolve the limitations, we suggest a new research direction for routing protocols in CRNs. We implement our protocol to compare with the existing routing protocols for multi-hop CRNs. Our protocol shows good performance compared to the existing routing protocols in terms of network performance and PU protection.

Design of the Security Evaluation System for Internet Secure Connectivity Assurance Platform (인터넷 패킷 보호 보증 플랫폼에서의 보안성 평가 시스템 설계)

  • 김상춘;한근희
    • Journal of KIISE:Information Networking
    • /
    • v.31 no.2
    • /
    • pp.207-216
    • /
    • 2004
  • IPsec protocol has been developed to provide security services to Internet. Recently IPsec is implemented on the various operating systems Hence, it is very important to evaluate the stability of the Ipsec protocol as well as other protocols that provide security services. However, there has been little effort to develop the tools that require to evaluate the stability of IPsec protocols. Therefore, in this paper, we develope the security requirements and suggest a security evaluation system for the Internet packet protection protocols that provide security services at the If level that can be used to check if the security protocols Provide the claimed services correctly This system can be used as debugging tool for developing IPsec based security system.

A Survey of Application Layer Protocols of Internet of Things

  • bibi, Nawab;Iqbal, Faiza;Akhtar, Salwa Muhammad;Anwar, Rabia;bibi, Shamshad
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.11
    • /
    • pp.301-311
    • /
    • 2021
  • The technological advancements of the last two decades directed the era of the Internet of Things (IoT). IoT enables billions of devices to connect through the internet and share their information and resources on a global level. These devices can be anything, from smartphones to embedded sensors. The main purpose of IoT is to make devices capable of achieving the desired goal with minimal to no human intervention. Although it hascome as a social and economic blessing, it still brought forward many security risks. This paper focuses on providing a survey of the most commonly used application layer protocols in the IoT domain, namely, Constrained Application Protocol (CoAP), Message Queuing Telemetry Transport (MQTT), Advanced Message Queuing Protocol (AMQP), and Extensible Messaging and Presence Protocol (XMPP). MQTT, AMQP, and XMPP use TCP for device-to-device communication, while CoAP utilizes UDP to achieve this purpose. MQTT and AMQP are based on a publish/subscribe model, CoAP uses the request/reply model for its structuring. In addition to this, the quality of service provision of MQTT, AMQP, and CoAP is not very high, especially when the deliverance of messages is concerned. The selection of protocols for each application is very a tedious task.This survey discusses the architectures, advantages, disadvantages, and applications of each of these protocols. The main contribution of this work is to describe each of the aforementioned application protocols in detail as well as providing their thorough comparative analysis. This survey will be helpful to the developers in selecting the protocol ideal for their system and/or application.

Hybrid FPMS: A New Fairness Protocol Management Scheme for Community Wireless Mesh Networks

  • Widanapathirana, Chathuranga H.;Sekercioglu, Y. Ahmet;Goi, Bok-Min
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.11
    • /
    • pp.1909-1928
    • /
    • 2011
  • Node cooperation during packet forwarding operations is critically important for fair resource utilization in Community Wireless Mesh Networks (CoWMNs). In a CoWMN, node cooperation is achieved by using fairness protocols specifically designed to detect and isolate malicious nodes, discourage unfair behavior, and encourage node participation in forwarding packets. In general, these protocols can be split into two groups: Incentive-based ones, which are managed centrally, and use credit allocation schemes. In contrast, reputation-based protocols that are decentralized, and rely on information exchange among neighboring nodes. Centrally managed protocols inevitably suffer from scalability problems. The decentralized, reputation-based protocols lacks in detection capability, suffer from false detections and error propagation compared to the centralized, incentive-based protocols. In this study, we present a new fairness protocol management scheme, called Hybrid FPMS that captures the superior detection capability of incentive-based fairness protocols without the scalability problems inherently expected from a centralized management scheme as a network's size and density grows. Simulation results show that Hybrid FPMS is more efficient than the current centralized approach and significantly reduces the network delays and overhead.

Survivability Analysis of MANET Routing Protocols under DOS Attacks

  • Abbas, Sohail;Haqdad, Muhammad;Khan, Muhammad Zahid;Rehman, Haseeb Ur;Khan, Ajab;Khan, Atta ur Rehman
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.9
    • /
    • pp.3639-3662
    • /
    • 2020
  • The network capability to accomplish its functions in a timely fashion under failures and attacks is known as survivability. Ad hoc routing protocols have been studied and extended to various domains, such as Intelligent Transport Systems (ITSs), Unmanned Aerial Vehicles (UAVs), underwater acoustic networks, and Internet of Things (IoT) focusing on different aspects, such as security, QoS, energy. The existing solutions proposed in this domain incur substantial overhead and eventually become burden on the network, especially when there are fewer attacks or no attack at all. There is a need that the effectiveness of these routing protocols be analyzed in the presence of Denial of Service (DoS) attacks without any intrusion detection or prevention system. This will enable us to establish and identify the inherently stable routing protocols that are capable to survive longer in the presence of these attacks. This work presents a DoS attack case study to perform theoretical analysis of survivability on node and network level in the presence of DoS attacks. We evaluate the performance of reactive and proactive routing protocols and analyse their survivability. For experimentation, we use NS-2 simulator without detection or prevention capabilities. Results show that proactive protocols perform better in terms of throughput, overhead and packet drop.

Routing Protocols for VANETs: An Approach based on Genetic Algorithms

  • Wille, Emilio C. G.;Del Monego, Hermes I.;Coutinho, Bruno V.;Basilio, Giovanna G.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.2
    • /
    • pp.542-558
    • /
    • 2016
  • Vehicular Ad Hoc Networks (VANETs) are self-configuring networks where the nodes are vehicles equipped with wireless communication technologies. In such networks, limitation of signal coverage and fast topology changes impose difficulties to the proper functioning of the routing protocols. Traditional Mobile Ad Hoc Networks (MANET) routing protocols lose their performance, when communicating between vehicles, compromising information exchange. Obviously, most applications critically rely on routing protocols. Thus, in this work, we propose a methodology for investigating the performance of well-established protocols for MANETs in the VANET arena and, at the same time, we introduce a routing protocol, called Genetic Network Protocol (G-NET). It is based in part on Dynamic Source Routing Protocol (DSR) and on the use of Genetic Algorithms (GAs) for maintenance and route optimization. As G-NET update routes periodically, this work investigates its performance compared to DSR and Ad Hoc on demand Distance Vector (AODV). For more realistic simulation of vehicle movement in urban environments, an analysis was performed by using the VanetMobiSim mobility generator and the Network Simulator (NS-3). Experiments were conducted with different number of vehicles and the results show that, despite the increased routing overhead with respect to DSR, G-NET is better than AODV and provides comparable data delivery rate to the other protocols in the analyzed scenarios.