• Title/Summary/Keyword: Internet Protocol

Search Result 2,437, Processing Time 0.028 seconds

A Study on the Fingerprint-based User Authentication Protocol Considering both the Mobility and Security in the Telematics Environment (텔레메틱스 환경에서 이동성과 보안성을 고려한 지문정보를 이용한 사용자 인증 프로토콜에 관한 연구)

  • Kim, Tae-Sub;Oh, Ryong;Lee, Sang-Joon;Lee, Sung-Ju;Kim, Hak-Jae;Chung, Yong-Wha;Cho, Choong-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.11A
    • /
    • pp.1128-1137
    • /
    • 2007
  • Recently, according to being advanced internet, mobile communication technique, Telematics environment which users in vehicle can use internet service in LAN(Local Area Network) via mobile device has being realized. In this paper, we propose the remote user authentication protocol to solve these issues. Additionally, we use biometrics(fingerprint) for our user authentication protocol cause it can provide to avoid critical weakness that can be lost, stolen, or forgotten and to make authentication easily. In our user authentication protocol, to protect the biometric we use session key which is generated from master key distributed in our key distribution protocol. In particular, we propose secure protocol between APs considering weakness of security in mobile environment. Based on implementation of our proposed protocol, we conform that our proposed protocols are secure from various attack methods and provide real-time authentication.

Performance Analysis of 1-2-1 Cooperative Protocol in Wireless Sensor Networks (무선 센서 네트워크에서 1-2-1 협력 프로토콜에 관한 연구)

  • Choi, Dae-Kyu;Kong, Hyung-Yun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.5
    • /
    • pp.113-119
    • /
    • 2008
  • Conventional 1-1-1 cooperative protocol offers path-loss gain as advantage of multi-hop and spatial diversity which is equivalent to MIMO system. This protocol is enable to get higher reliability and reduction of power consumption than those of the single-hop or multi-hop. But the 1-1-1 cooperative protocol get only the diversity order 2 and limited path-loss reduction gain because this protocol has a single cooperative relay. We propose 1-2-1 cooperative protocol using two cooperative relays R1, R2. The 1-2-1 cooperative protocol can improve path-loss reduction and increase diversity order 3. Moreover, the cooperative relay R2 attains diversity order 2. The signaling method in transmission uses DF (Decode and Forward) or DR (Decode and Reencode) and 1-2-1 DF/DR cooperative protocol are applied to clustering based wireless sensor networks (WSNs). Simulations are performed to evaluate the performance of the protocols under Rayleigh fading channel plus AWGN (Additive White Gaussian Noise).

  • PDF

Implementation and Analysis of CoAP-Based Lightweight OpenADR2.0b protocol for Smart Energy IoT Environment (스마트 에너지 IoT를 위한 CoAP 기반 Lightweight OpenADR2.0b 프로토콜의 구현 및 분석)

  • Park, Heon-Il;Kim, Se-Young;Kang, Seong-Cheol;Park, Hyun-Jin;Kim, Il-Yeon;Choi, Jin-Seek
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.4
    • /
    • pp.904-914
    • /
    • 2017
  • For efficient energy usage, the concept of demand response has been emerged and thereby Open Automated D emand Response(OpenADR) protocol is developed as a standard protocol to provide automated demand response. There have been emerging trends on the demand response services using the Internet of Things(IoT) for smart h ome energy management. In this smart home energy IoT environment, a lightweight protocol is needed rather tha n the existing HTTP/ XML based OpenADR protocol for demand response services since many small devices wi ll be interconnected. In this paper, we propose a lightweight OpenADR protocol based on CoAP protocol for pro viding demand response service in Smart Energy IoT environment, implement the proposed CoAP-based protocol, and analyzed the performance compared to existing HTTP/ XML-based OpenADR 2.0b protocol.

Design of a Fault-Tolerant Routing Protocol for USN (USN을 위한 결함허용 라우팅 프로토콜의 설계)

  • Oh, Sun-Jin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.2
    • /
    • pp.51-57
    • /
    • 2009
  • Ubiquitous sensor network is the communication environment where sensor nodes move freely and construct network to get the services from the system. So, it does not need fixed infrastructure and can easily be placed in unaccessible regions like war or calamity area. Wireless sensor network protocol has self-organizing capability, need to adapt topology change flexibly and also has technique that sensor nodes work cooperatively, because network disconnection is frequently occurred due to the active mobility of sensor nodes. In this paper, we design a cluster based fault-tolerant routing protocol for the efficient topology construction and to guarantee stable data transmission in USN. The performance of the proposed protocol is evaluated by an analytic model.

  • PDF

Active Transmission Scheme to Achieve Maximum Throughput Over Two-way Relay Channel (양방향 중계채널에서 최대 전송률을 위한 동적 전송 기법)

  • Park, Ji-Hwan;Kong, Hyung-Yun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.5
    • /
    • pp.31-37
    • /
    • 2009
  • In the two-way relay channel, the relay employ Amplify-and-Forward (AF) or Decode-and-Forward (DF) protocol, and broadcast the network-coded signal to both user. In the system, DF protocol provides maximum throughput at low signal to noise ratio(SNR). On the other hand, at high SNR, AF protocol provides maximum throughput. The paper propose active transmission scheme which employ Amplify-and-Forward or Decode-and-Forward protocol based on received SNR at the relay over Two-way relay channel. The optimal threshold is investigated numerically for switching the protocol. Through numerical results, we confirm that the proposed scheme outperforms conventional schemes over two-way relay channel.

  • PDF

A Combining Scheme to Reduce Power Consumption in Cooperation and Cyclic Code for Wireless Sensor Networks (협력-순환 부호를 이용한 무선 센서 네트워크에서의 전력 소모 감소를 위한 결합기법에 관한 연구)

  • Kong, Hyung Yun;Hwang, Yun Kyeong;Hong, Seong Wook
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.6
    • /
    • pp.63-69
    • /
    • 2008
  • In this paper, our goal is to find a power-effective protocol that improves the accuracy of transmission in sensor networks. Therefore we propose a cooperative communication protocol based on MRC(Maximal Ratio Combining) and cyclic code. In our proposal, one sensor node assists two others to communicate with a clusterhead that can get diversity effect and MRC can improve diversity effect also. The proposed protocol with cyclic code can correct error up to 3-bit and reduce decoding complexity compared with convolutional code. Simulation results reveal proposed protocol can save the network energy up to 6dB over single-hop protocol at BER(Bit Error Rate) of $10^{-2}$.

  • PDF

Developing a new MAC Protocol for Multi-hop Underwater Acoustic Sensor Networks (다중 홉 수중 음향 센서네트워크를 위한 MAC 프로토콜 설계)

  • Lim, Chansook
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.6
    • /
    • pp.97-103
    • /
    • 2008
  • T-Lohi, a MAC protocol for underwater acoustic sensor networks, has been designed to support dense networks consisting of short-range acoustic modems. However when T-Lohi is applied to large networks in which multi-hop routing is necessary, it suffers a lot of packet collisions due to the hidden terminal problem. To combat this problem, we propose a new MAC protocol which employs RTS/CTS handshaking. To our knowledge, this protocol is the first to adopt both a tone-based approach and RTS/CTS handshaking for dense underwater acoustic sensor networks. Simulation results show that this new protocol drastically reduces packet collisions while achieving good network utilization.

  • PDF

Energy Improvement of WSN Using The Stochastic Cluster Head Selection (확률적 클러스터 헤드 선출 방법을 이용한 WSN 에너지 개선)

  • Lee, Jong-Yong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.1
    • /
    • pp.125-129
    • /
    • 2015
  • The most important factor within the wireless sensor network is to have effective network usage and increase the lifetime of the individual nodes in order to operate the wireless network more efficiently. Therefore, many routing protocols have been developed. The LEACH protocol presented by Wendi Heinzelman, especially well known as a simple and efficient clustering based routing protocol. However, because LEACH protocol in an irregular network is the total data throughput efficiency dropped, the stability of the cluster is declined. Therefore, to increase the stability of the cluster head, in this paper, it proposes a stochastic cluster head selection method for improving the LEACH protocol. To this end, it proposes a SH-LEACH(Stochastic Cluster Head Selection Method-LEACH) that it is combined to the HEED and LEACH protocol and the proposed algorithm is verified through the simulation.

Energy-Efficient Routing Protocol for Wireless Sensor Networks Based on Improved Grey Wolf Optimizer

  • Zhao, Xiaoqiang;Zhu, Hui;Aleksic, Slavisa;Gao, Qiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.6
    • /
    • pp.2644-2657
    • /
    • 2018
  • To utilize the energy of sensor nodes efficiently and extend the network lifetime maximally is one of the primary goals in wireless sensor networks (WSNs). Thus, designing an energy-efficient protocol to optimize the determination of cluster heads (CHs) in WSNs has become increasingly important. In this paper, we propose a novel energy-efficient protocol based on an improved Grey Wolf Optimizer (GWO), which we refer to as Fitness value based Improved GWO (FIGWO). It considers a fitness value to improve the finding of the optimal solution in GWO, which ensures a better distribution of CHs and a more balanced cluster structure. According to the distance to the CHs and the BS, sensor nodes' transmission distance are recalculated to reduce the energy consumption. Simulation results demonstrate that the proposed approach can prolong the stability period of the network in comparison to other algorithms, namely by 31.5% in comparison to SEP, and even by 57.8% when compared with LEACH protocol. The results also show that the proposed protocol performs well over the above comparative protocols in terms of energy consumption and network throughput.