The advent of the Internet and related Web technologies has created an easily accessible link between a firm and its customers, and has provided opportunities to a firm to use information technology to support supplementary after-sale services associated with a product or service. It has been widely recognized that supplementary services are an important source of customer value and of competitive advantage as the characteristics of the product itself. Many of these supplementary services are information-based and need not be co-located with the product, so more and more companies are delivering these services electronically. Net-based customer service, which is defined as an Internet-based computerized information system that delivers services to a customer, therefore, is the core infrastructure for supplementary service provision. The importance of net-based customer service in delivering supplementary after-sale services associated with product has been well documented. The strategic advantages of well-implemented net-based customer service are enhanced customer loyalty and higher lock-in of customers, and a resulting reduction in competition and the consequent increase in profits. However, not all customers utilize such net-based customer service. The digital divide is the phenomenon in our society that captures the observation that not all customers have equal access to computers. Socioeconomic factors such as race, gender, and education level are strongly related to Internet accessibility and ability to use. This is due to the differences in the ability to bear the cost of a computer, and the differences in self-efficacy in the use of a technology, among other reasons. This concept, applied to e-commerce, has been called the "e-commerce divide." High Internet penetration is not eradicating the digital divide and e-commerce divide as one would hope. Besides, to accommodate personalized support, a customer must often provide personal information to the firm. This personal information includes not only name and address, but also preferences information and perhaps valuation information. However, many recent studies show that consumers may not be willing to share information about themselves due to concerns about privacy online. Due to the e-commerce divide, and due to privacy and security concerns of the customer for sharing personal information with firms, limited numbers of customers adopt net-based customer service. The limited level of customer adoption of net-based customer service affects the firm profits and the customers' welfare. We use a game-theoretic model in which we model the net-based customer service system as a mechanism to enhance customers' loyalty. We model a market entry scenario where a firm (the incumbent) uses the net-based customer service system in inducing loyalty in its customer base. The firm sells one product through the traditional retailing channels and at a price set for these channels. Another firm (the entrant) enters the market, and having observed the price of the incumbent firm (and after deducing the loyalty levels in the customer base), chooses its price. The profits of the firms and the surplus of the two customers segments (the segment that utilizes net-based customer service and the segment that does not) are analyzed in the Stackelberg leader-follower model of competition between the firms. We find that an increase in adoption of net-based customer service by the customer base is not always desirable for firms. With low effectiveness in enhancing customer loyalty, firms prefer a high level of customer adoption of net-based customer service, because an increase in adoption rate decreases competition and increases profits. A firm in an industry where net-based customer service is highly effective loyalty mechanism, on the other hand, prefers a low level of adoption by customers.
Journal of the Korea Academia-Industrial cooperation Society
/
v.14
no.11
/
pp.5698-5706
/
2013
This study presents research into the patterns that affect the understanding and acceptance of healthcare management systems as part of a healthcare information technology infrastructure targeted at university students. The participants were 623 university students in D city and K province. This study employed a descriptive and correlational cross-sectional survey and made use of the ubiquitous healthcare management services measurement scale. 48.5% of respondents had accessed healthcare-related information on the Internet. Among the independent variables of general characteristics related to perceived susceptibility was found to have adj $R^2$ of 11% while the other dependent factors reported much lower between 0.5 to 4.7%. Female respondents, medical-related majors, self-efficacy, and intention to use had significant positive effects while health beliefs and concern had a significant negative effect on the intentional acceptance of healthcare information technology systems.
Cloud storage service has the potential to be a core infrastructure for the future mobile and Internet service; thus related service providers have been investing in it and trying to attract as many users as possible. In addition, those need to find out what motivates the users to keep using their service not only to attract new customers but also to secure their subscribers. Therefore, this study will examine its relationship with user's motivation based on the extended TAM model with external variables for objective research about continuous use of cloud storage service. As a result, it was found that personal innovativeness, self efficacy, functional attributes, and psychological switching cost influence the continuous use of cloud storage service. Also, it is expected they can guide service providers to the right track when setting up their business strategy in the future.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.18
no.3
/
pp.570-590
/
2024
Breast cancer ranks among the most prevalent forms of malignancy and foremost cause of death by cancer worldwide. It is not preventable. Early and precise detection is the only remedy for lowering the rate of mortality and improving the probability of survival for victims. In contrast to present procedures, thermography aids in the early diagnosis of cancer and thereby saves lives. But the accuracy experiences detrimental impact by low sensitivity for small and deep tumours and the subjectivity by physicians in interpreting the images. Employing deep learning approaches for cancer detection can enhance the efficacy. This study explored the utilization of thermography in early identification of breast cancer with the use of a publicly released dataset known as the DMR-IR dataset. For this purpose, we employed a novel approach that entails the utilization of a pre-trained MobileNetV2 model and fine tuning it through transfer learning techniques. We created three models using MobileNetV2: one was a baseline transfer learning model with weights trained from ImageNet dataset, the second was a fine-tuned model with an adaptive learning rate, and the third utilized early stopping with callbacks during fine-tuning. The results showed that the proposed methods achieved average accuracy rates of 85.15%, 95.19%, and 98.69%, respectively, with various performance indicators such as precision, sensitivity and specificity also being investigated.
With the advent of communication technologies including electronic collaborative tools and conferencing systems provided over the Internet, virtual collaboration is becoming increasingly common in organizations. Virtual collaboration refers to an environment in which the people working together are interdependent in their tasks, share responsibility for outcomes, are geographically dispersed, and rely on mediated rather than face-to face, communication to produce an outcome. Research suggests that new sets of individual skill, knowledge, and ability (SKAs) are required to perform effectively in today's virtualized workplace, which is labeled as individual virtual competence. It is also argued that use of online social networking sites may influence not only individuals' daily lives but also their capability to manage their work-related relationships in organizations, which in turn leads to better performance. The existing research regarding (1) the relationship between virtual competence and task performance and (2) the relationship between online networking and task performance has been conducted based on different theoretical perspectives so that little is known about how online social networking and virtual competence interplay to predict individuals' task performance. To fill this gap, this study raises the following research questions: (1) What is the individual virtual competence required for better adjustment to the virtual collaboration environment? (2) How does online networking via diverse social network service sites influence individuals' task performance in organizations? (3) How do the joint effects of individual virtual competence and online networking influence task performance? To address these research questions, we first draw on the prior literature and derive four dimensions of individual virtual competence that are related with an individual's self-concept, knowledge and ability. Computer self-efficacy is defined as the extent to which an individual beliefs in his or her ability to use computer technology broadly. Remotework self-efficacy is defined as the extent to which an individual beliefs in his or her ability to work and perform joint tasks with others in virtual settings. Virtual media skill is defined as the degree of confidence of individuals to function in their work role without face-to-face interactions. Virtual social skill is an individual's skill level in using technologies to communicate in virtual settings to their full potential. It should be noted that the concept of virtual social skill is different from the self-efficacy and captures an individual's cognition-based ability to build social relationships with others in virtual settings. Next, we discuss how online networking influences both individual virtual competence and task performance based on the social network theory and the social learning theory. We argue that online networking may enhance individuals' capability in expanding their social networks with low costs. We also argue that online networking may enable individuals to learn the necessary skills regarding how they use technological functions, communicate with others, and share information and make social relations using the technical functions provided by electronic media, consequently increasing individual virtual competence. To examine the relationships among online networking, virtual competence, and task performance, we developed research models (the mediation, interaction, and additive models, respectively) by integrating the social network theory and the social learning theory. Using data from 112 employees of a virtualized company, we tested the proposed research models. The results of analysis partly support the mediation model in that online social networking positively influences individuals' computer self-efficacy, virtual social skill, and virtual media skill, which are key predictors of individuals' task performance. Furthermore, the results of the analysis partly support the interaction model in that the level of remotework self-efficacy moderates the relationship between online social networking and task performance. The results paint a picture of people adjusting to virtual collaboration that constrains and enables their task performance. This study contributes to research and practice. First, we suggest a shift of research focus to the individual level when examining virtual phenomena and theorize that online social networking can enhance individual virtual competence in some aspects. Second, we replicate and advance the prior competence literature by linking each component of virtual competence and objective task performance. The results of this study provide useful insights into how human resource responsibilities assess employees' weakness and strength when they organize virtualized groups or projects. Furthermore, it provides managers with insights into the kinds of development or training programs that they can engage in with their employees to advance their ability to undertake virtual work.
With the development of Internet and popularization of smartphones over recent years, social network services are experiencing rapid growth. On top of this, smartphone gaming market is showing a rapid growth and the use of mobile social games is on the significant rise. The occurrence of game data manipulation targeting these services and personal information leakage is highlighting the importance of social gaming security. This study is intended to propose development plans effective and efficient in social game services by figuring out factors putting effects on security dependent behavior of social game users in Korea and carrying out a practical study on the casual relationship between factors influencing security dependent behavior through recognized behavioral control and attitudes for privacy infringement of these factors. To do this, proposed was a study model in which the HBM(Health Belief Model) allowing the social game user to influence security dependent behavior was expanded and applied as a major variable. To verify the study model of this study practically, a survey was conducted among university students in Seoul-based K University and S University who had experienced using social game services. According to the study findings, firstly, the perceived seriousness turned out to provide positive influence to trust. But, the perceived seriousness turned out not to put positive effects on self-efficacy. Secondly, the perceived probability turned out not to put positive effects on self-efficacy and trust. Thirdly, the perceived gain turned out to put positive effects on self-efficacy and trust. Fourthly, the perceived disorder turned out not to put positive effects on self-efficacy and trust. Fifthly, self-efficacy turned out to put positive effects on trust. But, self-efficacy turned out not to put positive effects on security dependent behavior. Sixthly, trust turned out not to put positive effects on security dependent behavior. This study is intended to make a strategic proposal so that social game users can raise awareness of their level of security perception and security willingness through this.
In this paper, we address a video summarization task as generating both visually salient and semantically important video segments. In order to find salient data points, one can use the OC-SVM (One-class Support Vector Machine), which is well known for novelty detection problems. It is, however, hard to incorporate into the OC-SVM process the importance measure of data points, which is crucial for video summarization. In order to integrate the importance of each point in the OC-SVM process, we propose a fuzzy version of OC-SVM. The Importance-based Fuzzy OC-SVM weights data points according to the importance measure of the video segments and then estimates the support of a distribution of the weighted feature vectors. The estimated support vectors form the descriptive segments that best delineate the underlying video content in terms of the importance and salience of video segments. We demonstrate the performance of our algorithm on several synthesized data sets and different types of videos in order to show the efficacy of the proposed algorithm. Experimental results showed that our approach outperformed the well known traditional method.
Deep learning applications are increasingly being leveraged for disease detection tasks in medical imaging modalities such as X-ray, Computed Tomography (CT), and Magnetic Resonance Imaging (MRI). Most data-centric deep learning challenges necessitate the use of supervised learning methodologies to attain high accuracy and to facilitate performance evaluation through comparison with the ground truth. Supervised learning mandates a substantial amount of image and label sets, however, procuring an adequate volume of medical imaging data for training is a formidable task. Various data augmentation strategies can mitigate the underfitting issue inherent in supervised learning-based models that are trained on limited medical image and label sets. This research investigates the enhancement of a deep learning-based rib fracture segmentation model and the efficacy of data augmentation techniques such as left-right flipping, rotation, and scaling. Augmented dataset with L/R flipping and rotations(30°, 60°) increased model performance, however, dataset with rotation(90°) and ⨯0.5 rescaling decreased model performance. This indicates the usage of appropriate data augmentation methods depending on datasets and tasks.
In recent years, smart devices have changed the paradigm of education. However, the educational environment and teaching methods could not catch up with this fast improvement and an utmost need for development of educational methods has been realized. In this paper, the general usage of smart devices by elementary school teachers is analyzed and the methods through which smart devices are utilizing smart learning is discussed in the result. A survey of 221 elementary school teachers in Gangwon Province showed that 87.7% of them are currently using smart devices. In addition, teachers were using smart devices with not much difference from ordinary people. The three main motives of teachers who were already using smart devices and those who were planning to take advantage of smart devices were innovativeness, usability and easiness. The reason of need to apply smart devices in education is because of its functionality in various learning types, courses and teaching-learning process methods. Although smart devices have a high efficacy in education but they are not widely utilized yet. In order to solve these problems and be able to take more advantage of smart devices in education, teachers should learn how to use smart devices and a strong sense of willingness is required to make changes in the educational methods. The results of this research on elementary school teachers can be further developed for a greater smart device based smart learning.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.17
no.7
/
pp.1951-1975
/
2023
Recent advances in Cognitive Radio Networks (CRN) have elevated them to the status of a critical instrument for overcoming spectrum limits and achieving severe future wireless communication requirements. Collaborative spectrum sensing is presented for efficient channel selection because spectrum sensing is an essential part of CRNs. This study presents an innovative cooperative spectrum sensing (CSS) model that is built on the Firefly Algorithm (FA), as well as machine learning artificial neural networks (ANN). This system makes use of user grouping strategies to improve detection performance dramatically while lowering collaboration costs. Cooperative sensing wasn't used until after cognitive radio users had been correctly identified using energy data samples and an ANN model. Cooperative sensing strategies produce a user base that is either secure, requires less effort, or is faultless. The suggested method's purpose is to choose the best transmission channel. Clustering is utilized by the suggested ANN-FA model to reduce spectrum sensing inaccuracy. The transmission channel that has the highest weight is chosen by employing the method that has been provided for computing channel weight. The proposed ANN-FA model computes channel weight based on three sets of input parameters: PU utilization, CR count, and channel capacity. Using an improved evolutionary algorithm, the key principles of the ANN-FA scheme are optimized to boost the overall efficiency of the CRN channel selection technique. This study proposes the Artificial Neural Network with Firefly Algorithm (ANN-FA) for cognitive radio networks to overcome the obstacles. This proposed work focuses primarily on sensing the optimal secondary user channel and reducing the spectrum handoff delay in wireless networks. Several benchmark functions are utilized We analyze the efficacy of this innovative strategy by evaluating its performance. The performance of ANN-FA is 22.72 percent more robust and effective than that of the other metaheuristic algorithm, according to experimental findings. The proposed ANN-FA model is simulated using the NS2 simulator, The results are evaluated in terms of average interference ratio, spectrum opportunity utilization, three metrics are measured: packet delivery ratio (PDR), end-to-end delay, and end-to-average throughput for a variety of different CRs found in the network.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.