• 제목/요약/키워드: Internet Classification

검색결과 1,070건 처리시간 0.03초

To develop the classification method of Agricultural by-productions for biogas production

  • Kim, Minjee;Kim, Sanghun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제7권2호
    • /
    • pp.155-160
    • /
    • 2015
  • The objective of this study was to develop the classification method of various organic wastes. Specifically, the effects of proximate composition on the biogas production and degradation rates of agricultural by-production was investigated and a new standards for mixture of various organic wastes based on proximate composition combination was developed. Agricultural by-products (ABPs) with medium total carbohydrate, medium crude protein and low fat contents demonstrated the single step digestion process. ABPs with low total carbohydrate, high crude protein and high fat contents demonstrated the two step digestion process of Diauxic growth. The single ABP (Class No. 15) and the mixed ABPs (Class No. 12+18, 6+12+22, 9+12+18) after 10days showed the similar biogas yield pattern. We can use the classification method for the more ABPs and organic wastes from factory and municipal waste treatment plant for the high efficient biogas production.

오디오 신호에 기반한 음란 동영상 판별 (Classification of Phornographic Videos Based on the Audio Information)

  • 김봉완;최대림;이용주
    • 대한음성학회지:말소리
    • /
    • 제63호
    • /
    • pp.139-151
    • /
    • 2007
  • As the Internet becomes prevalent in our lives, harmful contents, such as phornographic videos, have been increasing on the Internet, which has become a very serious problem. To prevent such an event, there are many filtering systems mainly based on the keyword-or image-based methods. The main purpose of this paper is to devise a system that classifies pornographic videos based on the audio information. We use the mel-cepstrum modulation energy (MCME) which is a modulation energy calculated on the time trajectory of the mel-frequency cepstral coefficients (MFCC) as well as the MFCC as the feature vector. For the classifier, we use the well-known Gaussian mixture model (GMM). The experimental results showed that the proposed system effectively classified 98.3% of pornographic data and 99.8% of non-pornographic data. We expect the proposed method can be applied to the more accurate classification system which uses both video and audio information.

  • PDF

Intention Classification for Retrieval of Health Questions

  • Liu, Rey-Long
    • International Journal of Knowledge Content Development & Technology
    • /
    • 제7권1호
    • /
    • pp.101-120
    • /
    • 2017
  • Healthcare professionals have edited many health questions (HQs) and their answers for healthcare consumers on the Internet. The HQs provide both readable and reliable health information, and hence retrieval of those HQs that are relevant to a given question is essential for health education and promotion through the Internet. However, retrieval of relevant HQs needs to be based on the recognition of the intention of each HQ, which is difficult to be done by predefining syntactic and semantic rules. We thus model the intention recognition problem as a text classification problem, and develop two techniques to improve a learning-based text classifier for the problem. The two techniques improve the classifier by location-based and area-based feature weightings, respectively. Experimental results show that, the two techniques can work together to significantly improve a Support Vector Machine classifier in both the recognition of HQ intentions and the retrieval of relevant HQs.

Background Subtraction for Moving Cameras based on trajectory-controlled segmentation and Label Inference

  • Yin, Xiaoqing;Wang, Bin;Li, Weili;Liu, Yu;Zhang, Maojun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권10호
    • /
    • pp.4092-4107
    • /
    • 2015
  • We propose a background subtraction method for moving cameras based on trajectory classification, image segmentation and label inference. In the trajectory classification process, PCA-based outlier detection strategy is used to remove the outliers in the foreground trajectories. Combining optical flow trajectory with watershed algorithm, we propose a trajectory-controlled watershed segmentation algorithm which effectively improves the edge-preserving performance and prevents the over-smooth problem. Finally, label inference based on Markov Random field is conducted for labeling the unlabeled pixels. Experimental results on the motionseg database demonstrate the promising performance of the proposed approach compared with other competing methods.

A Video Smoke Detection Algorithm Based on Cascade Classification and Deep Learning

  • Nguyen, Manh Dung;Kim, Dongkeun;Ro, Soonghwan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권12호
    • /
    • pp.6018-6033
    • /
    • 2018
  • Fires are a common cause of catastrophic personal injuries and devastating property damage. Every year, many fires occur and threaten human lives and property around the world. Providing early important sign for early fire detection, and therefore the detection of smoke is always the first step in fire-alarm systems. In this paper we propose an automatic smoke detection system built on camera surveillance and image processing technologies. The key features used in our algorithm are to detect and track smoke as moving objects and distinguish smoke from non-smoke objects using a convolutional neural network (CNN) model for cascade classification. The results of our experiment, in comparison with those of some earlier studies, show that the proposed algorithm is very effective not only in detecting smoke, but also in reducing false positives.

Automated Link Tracing for Classification of Malicious Websites in Malware Distribution Networks

  • Choi, Sang-Yong;Lim, Chang Gyoon;Kim, Yong-Min
    • Journal of Information Processing Systems
    • /
    • 제15권1호
    • /
    • pp.100-115
    • /
    • 2019
  • Malicious code distribution on the Internet is one of the most critical Internet-based threats and distribution technology has evolved to bypass detection systems. As a new defense against the detection bypass technology of malicious attackers, this study proposes the automated tracing of malicious websites in a malware distribution network (MDN). The proposed technology extracts automated links and classifies websites into malicious and normal websites based on link structure. Even if attackers use a new distribution technology, website classification is possible as long as the connections are established through automated links. The use of a real web-browser and proxy server enables an adequate response to attackers' perception of analysis environments and evasion technology and prevents analysis environments from being infected by malicious code. The validity and accuracy of the proposed method for classification are verified using 20,000 links, 10,000 each from normal and malicious websites.

The Investigation of Employing Supervised Machine Learning Models to Predict Type 2 Diabetes Among Adults

  • Alhmiedat, Tareq;Alotaibi, Mohammed
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권9호
    • /
    • pp.2904-2926
    • /
    • 2022
  • Currently, diabetes is the most common chronic disease in the world, affecting 23.7% of the population in the Kingdom of Saudi Arabia. Diabetes may be the cause of lower-limb amputations, kidney failure and blindness among adults. Therefore, diagnosing the disease in its early stages is essential in order to save human lives. With the revolution in technology, Artificial Intelligence (AI) could play a central role in the early prediction of diabetes by employing Machine Learning (ML) technology. In this paper, we developed a diagnosis system using machine learning models for the detection of type 2 diabetes among adults, through the adoption of two different diabetes datasets: one for training and the other for the testing, to analyze and enhance the prediction accuracy. This work offers an enhanced classification accuracy as a result of employing several pre-processing methods before applying the ML models. According to the obtained results, the implemented Random Forest (RF) classifier offers the best classification accuracy with a classification score of 98.95%.

Triplet Class-Wise Difficulty-Based Loss for Long Tail Classification

  • Yaw Darkwah Jnr.;Dae-Ki Kang
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제15권3호
    • /
    • pp.66-72
    • /
    • 2023
  • Little attention appears to have been paid to the relevance of learning a good representation function in solving long tail tasks. Therefore, we propose a new loss function to ensure a good representation is learnt while learning to classify. We call this loss function Triplet Class-Wise Difficulty-Based (TriCDB-CE) Loss. It is a combination of the Triplet Loss and Class-wise Difficulty-Based Cross-Entropy (CDB-CE) Loss. We prove its effectiveness empirically by performing experiments on three benchmark datasets. We find improvement in accuracy after comparing with some baseline methods. For instance, in the CIFAR-10-LT, 7 percentage points (pp) increase relative to the CDB-CE Loss was recorded. There is more room for improvement on Places-LT.

Challenges and Subjects of Marketing Research in the Digital Age

  • Lee, Seung-Hee;Kim, Jong-Ho;Quan, Yue-Shun;Li, Donjin
    • 한국디지털정책학회:학술대회논문집
    • /
    • 한국디지털정책학회 2004년도 International Conference on Digital Policy & Management
    • /
    • pp.87-95
    • /
    • 2004
  • We explore marketing topics classification-internet marketing environment, internet marketing function, special internet marketing applications, internet marketing research, other topics in the digital age. This paper will introduce and discuss the changes that economic agents including firms and consumers will face in the digital marketing age. The digital revolution has shaken marketing to its core. The digital age provides the opportunity to reach vast new audiences with surgical precision.

  • PDF

배치 정규화와 CNN을 이용한 개선된 영상분류 방법 (An Improved Image Classification Using Batch Normalization and CNN)

  • 지명근;전준철;김남기
    • 인터넷정보학회논문지
    • /
    • 제19권3호
    • /
    • pp.35-42
    • /
    • 2018
  • 딥 러닝은 영상 분류를 위한 여러 방법 중 높은 정확도를 보이는 방법으로 알려져 있다. 본 논문에서는 딥 러닝 방법 가운데 합성곱 신경망 (CNN:Convolutional Neural Network)을 이용하여 영상을 분류함에 있어 배치 정규화 방법이 추가된 CNN을 이용하여 영상 분류의 정확도를 높이는 방법을 제시하였다. 본 논문에서는 영상 분류를 더 정확하게 수행하기 위해 기존의 뉴럴 네트워크에 배치 정규화 계층 (layer)를 추가하는 방법을 제안한다. 배치 정규화는 각 계층에 존재하는 편향을 줄이기 위해 고안된 방법으로, 각 배치의 평균과 분산을 계산하여 이동시키는 방법이다. 본 논문에서 제시된 방법의 우수성을 입증하기 위하여 SHREC13, MNIST, SVHN, CIFAR-10, CIFAR-100의 5개 영상 데이터 집합을 이용하여 영상분류 실험을 하여 정확도와 mAP를 측정한다. 실험 결과 일반적인 CNN 보다 배치 정규화가 추가된 CNN이 영상 분류 시 보다 높은 분류 정확도와 mAP를 보임을 확인 할 수 있었다.