• Title/Summary/Keyword: Internal transcribed spacer 2 (ITS2)

Search Result 369, Processing Time 0.025 seconds

Morphological and molecular evidence of the hybrid origin of Crepidiastrum ×muratagenii in Korea (홍도고들빼기의 형태 다양성 및 잡종 기원의 분자 증거)

  • JANG, Young-Jong;PARK, Boem Kyun;SON, Dong Chan;CHOI, Byoung-Hee
    • Korean Journal of Plant Taxonomy
    • /
    • v.52 no.2
    • /
    • pp.85-96
    • /
    • 2022
  • The plant "Hong-do-go-deul-ppae-gi" has been considered as Crepidiastrum × muratagenii, a hybrid between C. denticulatum and C. lanceolatum, based on its morphological traits and geographical distribution. To reveal the hybrid origin of Hong-do-go-deul-ppae-gi, we examined additional morphological traits of this plant and its putative parents (C. denticulatum, C. lanceolatum, C. platyphyllum) and analyzed one nuclear ribosomal internal transcribed spacer (ITS) region and four chloroplast regions (trnT-L, trnL-F, rpl16 intron, and rps16 intron). As a result of examining the morphological traits, putative hybrid individuals were classified into three types based on the habit, cauline leaf, outer phyllary, and achene beak traits. A molecular analysis found that the ITS sequences of Type 1 and Type 2 individuals showed additive species-specific sites of C. denticulatum and C. lanceolatum. Plastid sequences of Type 1 and Type 2 individuals showed C. denticulatum and C. lanceolatum sequences, respectively. However, Type 3 individuals had ITS and plastid sequences corresponding to C. denticulatum. Accordingly, Type 1 and Type 2 individuals not only share morphological traits with C. denticulatum and C. lanceolatum but also show additive species-specific sites for C. denticulatum and C. lanceolatum, and not C. platyphyllum, supporting its origin as a hybrid between C. denticulatum and C. lanceolatum. Type 3 had morphological traits similar to other hybrid types but was distinguished with respect to outer phyllaries and demonstrated some resemblance to C. denticulatum. In a molecular analysis, Type 3 was found to be identical with regard to the sequence of C. denticulatum and was judged to be an ecological variation of C. denticulatum.

Comparison of ITS(Internal Transcribed Spacer) and 5.8S rDNA Sequences among varieties and Cultivars in Panax ginseng

  • Yang, Deok-Chun;Yang, Key-Jin;Yoon, Eui-Soo
    • Journal of Photoscience
    • /
    • v.8 no.2
    • /
    • pp.55-60
    • /
    • 2001
  • Ginseng (Panax genus) is one of the most medicinally important genera and consists of highly regarded medicines. Among the species of Panax, the ginseng species is widely known to have most medicinal quality. P. ginseng has 3 varieties, Jakyung, Chunggyung and Hwangsook, discovered in nature with different colors of stem and fruit, Jakyung has two cultivars, Yunpoong and Chunpoong. Rigorous phylogenetic analysis of these varieties and cultivars has been conducted with sequencing of rDNA region. The sequences of ITS1, ITS2 of every varieties and cultivars within P. ginseng were identical. The sequence of 5.8S rDNAs of Hwangsook variety were different from the sequences of 5.8S rDNAs of others by only one base pair at nucleotide position 14. In phylogenetic analysis and predicted RNA secondary structure study, it is assumed that evolution has proceeded from Hwangsook to other varieties. recently.

  • PDF

Phylogenetic Analysis of Korean Native Aster Plants Based on Internal Transcribed Spacer (ITS) Sequences (ITS 염기서열을 이용한 한국산 참취속 식물의 유연관계분석)

  • Hong, Su-Young;Cho, Kwang-Soo;Yoo, Ki-Oug
    • Horticultural Science & Technology
    • /
    • v.30 no.2
    • /
    • pp.178-184
    • /
    • 2012
  • This study was carried out to decide ITS (internal transcribed spacer) sequence of some Korean native $Aster$ species and to resolve their relationship among Korean native $Aster$, including $Kalimeris$, $Gymnaster$, $Heteropappus$ genus separated from $Aster$ in a previously study based on the pappus length. We registered 11 ITS sequences of $Aster$ species including $A.$ $glehni$ to GenBank and those sequences were used for the cluster analysis with $Kalimeris$ species. The size of ITS1 was varied from 248 to 256 bp, while ITS2 was varied from 220 to 222 bp. The G + C content of the ITS region ranged from 49.4 to 53.5%. Pairwise comparison results showed that the substitution rate of ITS1 and ITS2 region was 9% and 10%, respectively. $Kalimeris$ sensu strict substitution rate was lower than that of $Aster$ sensu strict species. The strict consensus parsimonious cluster analysis showed $A.$ $tripolium$ is the first branching from the clade and the next is $A.$ $scaber$. The $Kalimeris$ species except for the $A.$ $hispidus$ were grouped into the same clade with high bootstrap value (91%) within $Aster$. $Gymnaster$ and $Heteropappus$ that has been classified by morphological characters were also grouped into broad sense $Aster$ clade. These results implied these three genera could be merged together into $Aster$ based on the ITS sequences.

Development of Molecular Marker for the authentication of Patriniae Radix by the analysis of DNA barcodes (DNA 바코드 분석을 통한 패장 기원종 감별용 분자 마커 개발)

  • Kim, Wook Jin;Ji, Yunui;Lee, Young Mi;Kang, Young Min;Choi, Goya;Kim, Ho Kyoung;Moon, Byeong Cheol
    • The Korea Journal of Herbology
    • /
    • v.29 no.6
    • /
    • pp.45-53
    • /
    • 2014
  • Objectives : Due to the morphological similarity of in the roots of herbal medicine, the official herbal medicine is very difficult to authenticate between the original plants of Patriniae Radix and two adulterant Patrinia species. Therefore, we introduced DNA barcode analysis to establish a powerful tool for the authentication of Patriniae Radix from its adulterants. Methods : To analyze DNA barcode regions, genomic DNA was extracted from twenty-nine specimens of Patrinia scabiosaefolia, Patrinia villosa, Patrinia saniculifolia, and Patrinia rupestris, and internal transcribed spacer 2(ITS2), matK and rbcL genes were amplified. For identification of species specific sequences, a comparative analysis was performed by the ClastalW based on entire sequences of ITS2, matK and rbcL genes, respectively. Results : In comparison of three DNA barcode sequences, we identified 22, 22, and 12 species-specific nucleotides enough to distinguish each four species from ITS2, matK and rbcL gene, respectively. The sequence differences at the corresponding positions were available genetic marker nucleotides to discriminate the correct species among analyzed four species. These results indicated that comparative analysis of ITS2, matK and rbcL genes were useful genetic markers to authenticate Patriniae Radix. Conclusions : The marker nucleotides enough to distinguish P. scabiosaefolia, P. villosa, P. saniculifolia, and P. rupestris, were obtained at 22 SNP marker nucleotides from ITS2 and matK DNA barcode sequences, but they were confirmed at 12 SNP marker nucleotides from rbcL. These differences could be used to authenticate Patriniae Radix from its adulterants as well as discriminating each four species.

Molecular Identification of Zoysia japonica and Zoysia sinica (Zoysia Species) Based on ITS Sequence Analyses and CAPS (ITS 염기서열 분석 및 CAPS를 이용한 조이시아 속(Zoysia) 들잔디와 갯잔디의 구별)

  • Hong, Min-Ji;Yang, Dae-Hwa;Jeong, Ok-Cheol;Kim, Yang-Ji;Park, Mi-Young;Kang, Hong-Gyu;Sun, Hyeon-Jin;Kwon, Yong-Ik;Park, Shin-Young;Yang, Paul;Song, Pill-Soon;Ko, Suk-Min;Lee, Hyo-Yeon
    • Horticultural Science & Technology
    • /
    • v.35 no.3
    • /
    • pp.344-360
    • /
    • 2017
  • Zoysiagrasses are important turf plants used for school playgrounds, parks, golf courses, and sports fields. The two most popular zoysiagrass species are Zoysia japonica and Zoysia sinica. These are widely distributed across different growing zones and are morphologically distinguishable from each other; however, it is phenotypically difficult to differentiate those that grow along the coastal line from those in beach area habitats. A combination of morphological and molecular approaches is desirable to efficiently identify these two plant cultivars. In this study, we used a rapid identification system based on DNA barcoding of the nrDNA-internal transcribed spacer (ITS) regions. The nrDNA-ITS regions of ITS1, 5.8S nrDNA, and ITS2 from Z. japonica, Z. sinica, Agrostis stolonifera, and Poa pratensis were DNA barcoded to classify these grasses according to their molecular identities. The nrDNA-ITS sequences of these species were found at 686 bp, 687 bp, 683 bp, and 681 bp, respectively. The size of ITS1 ranged from 248 to 249 bp, while ITS2 ranged from 270 to 274 bp. The 5.8S coding region ranged from 163 - 164bp. Between Z. japonica and Z. sinica, nineteen (2.8%) nucleotide sites were variable, and the G+C content of the ITS region ranged from 55.4 to 63.3%. Substitutions and insert/deletion (indel) sites in the nrDNA-ITS sequence of Z. japonica and Z. sinica were converted to cleaved amplified polymorphic sequence (CAPS) markers, and applied to the Zoysia grasses sampled to verify the presence of these markers. Among the 62 control and collected grass samples, we classified three groups: 36 Z. japonica, 22 Z. sinica, and 4 Z. japonica/Z. sinica hybrids. Morphological classification revealed only two groups; Z. japonica and Z. sinica. Our results suggest that used of the nrDNA-ITS barcode region and CAPS markers can be used to distinguish between Z. japonica and Z. sinica at the species level.

Phylogenetic Analysis of the Genus Phellinus by Comparing the Sequences of Internal Transcribed Spacers and 5.8S Ribosomal DNA (Ribosomal DNA의 Internal Transcribed Spacer(ITS) 부위의 염기서열분석에 의한 Phellinus속의 계통분석에 관한 연구)

  • Chung, Ji-Won;Kim, Gi-Young;Ha, Myung-Gui;Lee, Tae-Ho;Lee, Jae-Dong
    • The Korean Journal of Mycology
    • /
    • v.27 no.2 s.89
    • /
    • pp.124-131
    • /
    • 1999
  • This study was carried out to identify the phylogenetic relationship among Phellinus species by comparing the DNA sequences of the 5.8S ribosomal DNA (rDNA) and the internal transcribed spacers (ITSs), ITS1 and ITS2 regions. Two primers from the 3' end of 18S rDNA and the 5' end of 28S rDNA sequences were chosen to amplify the specific ITS regions of Phellinus spp. Phellinus strains used in the study were divided into four clusters by the phylogenetic tree based on the amplified regions of ITS and 5.8S rDNA sequences. The first cluster consist of Phellinus hartigii IMSNU 32041 and Phellinus robustus IMSNU 32068, and the second cluster consists of Phellinus linteus strains and Phellinus weirianus IMSNU 32021. Phellinus laevigatus KCTC 6229, KCTC 6230 and Phellinus igniarius KCTC 6227, KCTC 6228 belong to the third cluster. Finally, Phellinus chrysoloma KCTC 6225 and Phellinus chrysoloma KCTC 6226 are the fourth cluster. In the second cluster the differentiation between Phellinus linteus strains and Phellinus weirianus species were not possible by the comparison of the ITS sequences. These results revealed that Phellinus linteus and Phellinus weirianus cannot be established the concept of species level only by the ITS sequences. Therefore, both physiological and molecular biological methods as well as the sequences of type strains are necessary to classify the strains of these two species accurately. The comparison of the ITS sequences of four Phellinus species indicated that the sequences of the ITS1 generally are more divergent than those of the ITS2. Although the ITS sequences are varied in some species, the conserved regions in both ITS1 and ITS2 are useful tool to differentiate the species. Phellinus linteus and related species have their specific sequences in the ITS1 compared to the other species.

  • PDF

Cloning and Organization of the Ribosomal RNA Genes of the Mushroom Trichloma matsutake

  • Hwang, Seon-Kap;Kim, Jong-Guk
    • Journal of Microbiology and Biotechnology
    • /
    • v.5 no.4
    • /
    • pp.194-199
    • /
    • 1995
  • A portion (7.4 kb) of ribosomal DNA tandem repeat unit from a genome of the mushroom T. matsutake has been cloned. A 1.75 kb EcoRI fragment was cloned first using S. cerevisiae 255 rRNA gene as a probe, and this was then used for further cloning. A chromosomal walking experiment was carried out and the upstream region of the 1.75 kb fragment was cloned using SmaI/BamHI enzyme, the size was estimated to be 5.2 kb in length. Part of the downstream region of the 1.75 kb fragment was also cloned using XbaI/BamHI enzymes. Restriction enzyme maps of three cloned DNA fragments were constructed. Northern hybridization, using total RNA of T. matsutake, and the restriction fragments of three cloned DNAs as probes, revealed that all four ribosomal RNA genes (large subunit[LSU], small subunit [SSU], 5.85 and 5S rRNA genes) are present in the cloned region. The gene organization of the rDNA are regarded as an intergenic spacer [IGS]2 (partial) - SSU rRNA - internal transcribed spacer [ITS]1 - 5.8S rRNA - ITS2 - LSU rRNA - IGS1 -5S rRNA - IG52 (partial).

  • PDF

A Phylogenetic Study of Korean Carpesium L. Based on nrDNA ITS Sequences (ITS 염기서열에 의한 한국산 담배풀속(Carpesium L.)의 계통분류학적 연구)

  • Yoo, Kwang-Pil;Park, Seon-Joo
    • Korean Journal of Plant Resources
    • /
    • v.25 no.1
    • /
    • pp.96-104
    • /
    • 2012
  • Phylogenetic analyses were conducted to evaluate relationships of 7 taxa of Korean Carpesium including three outgroup (Inula britannica L., Inula germanica L., Rhanteriopsis lannginosa (DC.) Rauschert) by using ITS (internal transcribed spacer) sequences of nuclear ribosomal DNA. Phylogenetic studies used maximum parsimony, neighbor-joining and maximum likelihood methods analysis. The length of the ITS sequences was 731 bp, and the lengths of the ITS1, ITS2 and 5.8S regions were 284~297 bp, 264~266 bp and 164 bp, respectively. The total number of variable sites was 111 for the entire sequences, and a parsimony informative sites of 64 are valid. Base change appeared variously in ITS1 rather than in ITS2. As the result, Korean Carpesium were formed monophyletic group and C. abrotanoides situated as the most basal clade. The results show that C. macrocephalum is closely related with C. triste. C. rosulatum has the closest relationship with C. glossophyllum. C. cernuum is close to C. divaricatum. These results suggest that the ITS data used in this study could be useful for the phylogenetic analysis of Korean Carpesium.

Five Previously Unreported Endophytic Fungi Isolated from the Leaves of Woody Plants in Korea (목본식물의 잎에서 분리된 5종의 미기록 내생균)

  • Park, Hyeok;Shim, Jae-Sung;Kim, Ji-Su;Choi, Hang-Seok;Eom, Ahn-Heum
    • The Korean Journal of Mycology
    • /
    • v.45 no.4
    • /
    • pp.345-354
    • /
    • 2017
  • The leaves of two woody plant species, Pinus densiflora and Aronia melanocarpa, were collected in Korea, and endophytic fungi were isolated from these surface-sterilized leaves. The fungal isolates were identified based on their morphological characteristics and the results of the phylogenetic analysis involving nucleotide sequences of the internal transcribed spacer region (ITS), including 5.8S rDNA, D1/D2 regions of 28S rDNA, and ${\beta}-tubulin$ genes. Pestalotia lawsoniae and Zasmidium fructicola were isolated from Pinus densiflora, and three species, Pestalotiopsis chamaeropis, Pestalotiopsis jesteri, and Stagonosporopsis cucurbitacearum were isolated from Aronia melanocarpa. To the best of our knowledge, these species have not been previously reported in Korea.

First Report of Apple Decline Caused by Botryosphaeria sinensis in Korea

  • Lee, Seung-Yeol;Ten, Leonid N.;Back, Chang-Gi;Jung, Hee-Young
    • The Korean Journal of Mycology
    • /
    • v.49 no.3
    • /
    • pp.417-423
    • /
    • 2021
  • Apple decline symptoms were frequently observed on cv. Fuji apple orchards located in Gyeonggi, Gyeongbuk, and Gangwon provinces during surveys conducted from May until the end of September 2020. Three fungal strains were isolated from the margins of internal lesions of diseased apple trees, and their morphological characteristics were considered similar to Botryosphaeria sinensis. Phylogenetic analysis using internal transcribed spacer (ITS) regions, translation elongation factor 1-alpha (tef1), beta-tubulin (tub2), and the second largest subunit of RNA polymerase II (rpb2) gene sequences confirmed the closest relationship of isolates with B. sinensis at the species level. According to a pathogenicity test, the appearance of dark-brown discolorations and vascular necrosis on apple branches inoculated with the isolated strain KNUF-20-014 was observed. To the best of our knowledge, this is the first report of B. sinensis as the causal agent of apple disease in Korea.