• Title/Summary/Keyword: Internal porosity

Search Result 130, Processing Time 0.037 seconds

Release behavior of embedding materials on the porous Ti implants (다공성 티타늄 임플란트의 담지물질 방출거동)

  • Kim, Yung-Hoon;Kim, Nam-Joong
    • Journal of Technologic Dentistry
    • /
    • v.36 no.3
    • /
    • pp.179-184
    • /
    • 2014
  • Purpose: This study was performed to investigate the release behavior of bioactive materials as a BMP-2 embedding on the porous titanium implant. Methods: Porous Ti implant samples were fabricated by sintering of spherical Ti powders in a high vacuum furnace. Specimens diameter and height were 4mm and 10mm. Embedding materials were used to stamp ink. Sectional images, porosity and release behavior of porous Ti implants were evaluated by scanning electron microscope(SEM), mercury porosimeter and UV-Vis-NIR spectrophotometer. Results: Internal pore structure was formed fully open pore. Average pore size and porosity were $8.993{\mu}m$ and 8.918%. Embedding materials were released continually and slowly. Conclusion: Porous Ti implant was fabricated successfully by sintering method. Particles are necking strongly each other and others portions were vacancy. Therefore bioactive materials will be able to embedding to porous Ti implants. If the development of the fusion implant of the bioactive material will be able to have the chance to several patients.

Micromechanical Computational Analysis for the Prediction of Failure Strength of Porous Composites (다공성 복합재의 파손 강도 예측을 위한 미시역학 전산 해석)

  • Yang, Dae Gyu;Shin, Eui Sup
    • Composites Research
    • /
    • v.29 no.2
    • /
    • pp.66-72
    • /
    • 2016
  • Porosity in polymer matrix composites increases rapidly during thermochemical decomposition at high temperatures. The generation of pores reduces elastic moduli and failure strengths of composite materials, and gas pressures in internal pores influence thermomechanical behaviors. In this paper, micromechanical finite element analysis is carried out by using two-dimensional representative volume elements for unidirectionally fiber-reinforced composites with porous matrix. According to the state of the pores, effective elastic moduli, poroelastic parameters and failure strengths of the overall composites are investigated in detail. In particular, it is confirmed that the failure strengths in the transvers and through-thickness directions are predicted much more weakly than the strength of nonpored matrix, and decrease consistently as the porosity of matrix increases.

A Numerical Study on the Flow Characteristics in the Catalytic Muffler with Different Inlet and Outlet Configurations (입구 및 출구 형상 변화에 따른 촉매 삽입형 머플러 내부의 유동 해석)

  • An, Tae Hyun;Lee, Seung Yeop;Park, Yun Beom;Kim, Man Young
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.5
    • /
    • pp.59-66
    • /
    • 2013
  • Lack of the space in many diesel vehicles make it difficult to design and install the catalytic muffler to reduce emissions. For this reason, inlet part of the catalytic muffler is made of L-type which has lower flow uniformity than conventional I-type, and catalytic muffler has complex internal structure by various insertions, which affect the flow uniformity and pressure drop of the systems. In this work, the flow characteristics such as flow uniformity and pressure drop have been numerically investigated by changing such various geometries as inlet shape, porosity, and outlet shape inside the muffler with the three-dimensional turbulent incompressible flow solver. Total 4 different cases are considered in order to find optimal configurations of the catalytic muffler in view of high flow uniformity and low pressure drop. The results show that Case 2 which has no induction cone and outlet perforated pipe has higher uniformity index and lower pressure drop than others considered in this work.

Effects of the Pore Size of Graphite on the Mechanical Properties and Permeability of a Porous Nozzle for Continuous Casting Process

  • Cho, Yong-Ho;Kim, Juyoung;Yoon, Sanghyeon;Lee, Heesoo
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.7
    • /
    • pp.530-534
    • /
    • 2011
  • To analyze the effect of the pore size of graphite in a pore-forming agent, graphite was added to porous ceramics of $Al_2O_3-SiO_2-ZrO_2$ systems. The graphite had 45~75, 100~125, 150~180, and 75~180${\mu}m$ dimensions. The properties of the ceramics, such as apparent porosity, density, dynamic elastic modulus, mechanical strength, and permeability, were investigated. The average pore size increased from 15.35${\mu}m$ to 22.32${\mu}m$ with the increase of the graphite size. The sample with the largest average pore size showed the highest mechanical strength and gas permeability. This was due to the sample with the largest pore size at the same porosity having fewer pores and larger distance between the pores than the sample with the smallest pore size, making cracks less likely to propagate. In addition, the large pore size reduced the repulsive power originating from the drag force between the gas and internal pore walls.

Nonlinear primary resonance of multilayer FG shallow shell with an FG porous core reinforced by oblique stiffeners

  • Kamran Foroutan;Liming Dai
    • Structural Engineering and Mechanics
    • /
    • v.91 no.5
    • /
    • pp.503-516
    • /
    • 2024
  • The present research examines the primary resonance (PR) behaviors of oblique stiffened multilayer functionally graded (OSMFG) shallow shells featuring an FG porous (FGP) core under an external excitation. The research considers two distinct types of FGP cores: one characterized by uniform porosity distribution (UPD) and the other by non-uniform porosity distribution (NPD) along the thickness direction. Furthermore, the study explores two types of shallow shells: one with external oblique stiffeners and one with internal oblique stiffeners, which might have angles that are similar or different from each other. Using the stress function alongside the first-order shear deformation theory (FSDT), the research establishes a nonlinear model for OSMFG shallow shells. The strain-displacement relationships are obtained utilizing FSDT and von-Kármán's geometric assumptions. The Galerkin approach is utilized to discretize the nonlinear governing equations, allowing for the analysis of stiffeners at varied angles. To validate the obtained results, a comparison is made not only with the findings of previous research but also with the response of PR obtained theoretically with the method of multiple scales, using the P-T method. Renowned for its superior accuracy and reliability, the P-T method is deemed an apt selection within this framework. Additionally, the study investigates how differences in material characteristics and stiffener angles affect the system's PR behaviors. The results of this study can be used as standards by engineers and researchers working in this area, and they can offer important information for the design and evaluation of the shell systems under consideration.

Hydration Properties of Cement Matrix using Electrolysis Alkaline Aqueous and Ground Granulated Blast Furnace Slag (전기분해 알칼리 수 및 고로슬래그 미분말 혼입 시멘트 경화체의 수화 특성)

  • Jung, Yoong-Hoon;Kim, Ho-Jin;Park, Sun-Gyu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.2
    • /
    • pp.185-190
    • /
    • 2021
  • Cement has been used as a main material in the modern construction industry. However, it has been pointed out as a main cause of global warming due to carbon dioxide generated during manufactured. Recently, research that replacing cement substitute to industrial by-products such as Blast Furnace Slag which is by-producted in steelworks. When Blast Furnace Slag is used as a cement substitute, it shows a problem of lower initial strength, which is caused by glassy membrane on the particle surface. In this study, we used Electrolysis Alkaline Aqueous to improve the usability and problem of lower initial strength. As a result of the experiment, cement matrix using Blast Furnace Slag and Alkaline Aqueous showed initial strength and hydrate product were developed than that using general mixing water. Also, as a result of porosity analysis, It was confirmed that cement matrix using Alkaline Aqueous and Blast Furnace Slag has a tighter structure in internal porosity and porosity distribution than using general mixing water.

A Study on the Estimation of Stability of Fill Dam by Long-term Electrical Resistivity Monitoring (장주기 전기비저항 모니터링 기법을 이용한 필댐의 안정성 평가)

  • Kim, Gi-Ho;Lim, Heui-Dae;Ahn, Hee-Yoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.5
    • /
    • pp.53-64
    • /
    • 2013
  • Resistivity monitoring is based on the fact that a change in the porosity leads to the changes in water content and fine particles, which alter the electrical resistivity. At every embankment dam, internal erosion always occurs as time passes. The internal erosion generally develops into piping over a long time by backward erosion and concentrated leak, and finally leads to dam failure. Resistivity is known to be very sensitive to the changes in porosity in embankment dams. Thus resistivity monitoring is a reasonable method to find out the leakage zone. However, resistivity is strongly influenced by seasonal variation of temperature, TDS of reservoir water and water level. In this paper. we first installed electrodes permanently at the center of the crest. The electrical resistivity monitoring data was acquired every 6 hours from Apr. 3, 2011 to July. 31, 2012. To analyze the characteristics of monitoring data, each resistivity data was calculated from up to 2,950 data sets. The result indicated a seasonal resistivity variation due to related temperature. Finally, a quantitative method to estimate porosities of the embankment dam from the resistivity monitoring data was analyzed. The applicability and reliability were verified and the importance of electrical resistivity monitoring for obtaining reliable result was emphasized.

Analysis of Internal Structure in Alkali-Activated Fire Protection Materials Using Fly ash (플라이애시를 활용한 알칼리 활성화 내화성 마감재의 내부구조 분석)

  • Song, Hun;Chu, Yong-Sik;Lee, Jong-Kyu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.4
    • /
    • pp.104-112
    • /
    • 2012
  • This study involves investigating the correlation between variation of internal structure and heating temperature of alkali-activated fire protection materials using fly ash. Dehydration and micro crack thermal expansion occur in cement hydrates of cementitious materials heated by fire. Internal structure difference due to both the dehydration of cement hydrates and pore solution causes and influences changes in the properties of materials. Also, this study is concerned with change in microstructure and dehydration of the alkali-activated fire protection materials at high temperatures. The testing methods of alkali-activated fire protection materials in high temperature properties are make use of TG-DSC and mercury intrusion porosimetry measurements. The study results show that the alkali-activated fire resistant finishing material composed of potassium hydroxide, sodium silicate and fly ash has the high temperature thermal stability. These thermal stability is caused by the ceramic binding capacity induced by alkali activation reaction.

  • PDF

Characteristics of Denitrification from Municipal Wastewater Treatment using a Combined Fixed Film Reactor (CFFR) Process (복합생물막 반응기를 이용한 하수처리시 탈질화 특성)

  • 이종현;남해욱;김영규;박태주
    • Journal of Environmental Science International
    • /
    • v.8 no.1
    • /
    • pp.107-113
    • /
    • 1999
  • A new biological nutrient removal system combining $A^2/O$ process with fixed film was developed in this work and the characteristics of denitrification were especially investigated in the combined fixed film reactor(CFFR). Media was added in the anaerobic, anoxic and aerobic reactors, respectively. Tests were made to establish the effluent level of $NO_x-N$, COD, DO and nitrite effects on $NO_x-N$ removal in the CFFR by decreasing hydraulic retention time (HRT) from 10.0 to 3.5 hours and by increasing internal recycle ratio form 0% to 200%. The influent was synthesized to levels similar to the average influent of municipal wastewater treatment plants in Korea. SARAN media with a porosity of 96.3% was packed 40% / 130% / 25% based on its reactor volume, respectively. It was found that COD rarely limited dentrification in the anoxic reactor because of high $C/NO_x/-N$ ratio in the anoxic reactor, while DO concentration in the anoxic reactor and $NO_2-N/NO_x/-N$ from the aerobic effluent inhibited denitrification in the anoxic reactor. It was proved that the critical points of DO concentration in the anoxic reactor and $NO_2-N/NO_x/-N$ from the aerobic effluent were 0.15mg/L and 10%, respectively. As the internal recycle ratio increased, DO concentration in the anoxic reactor and $NO_2-N/NO_x/-N$ from the aerobic effluent increased. Especially, at the condition of internal recycle ratio, 200%, DO concentration in the anoxic reactor and $NO_2-N/NO_x/-N$ from the aerobic effluent exceeded the critical points of 0.15mg/L and 10%, respectively. Then, denitrification efficiency considerably decreased. Consequently, it was represented that the control of DO concentration in the anoxic reactor and $NO_2-N/NO_x/-N$ from the aerobic effluent can assure effective denitrification.

  • PDF

Analysis of Variations in Mechanical Properties of Soil by Tillage Operations (경운작업에 의한 토양 역학적 특성의 변이 특성)

  • Park, J.G.;Lee, K.S.;Cho, S.C.;Noh, K.M.;Chung, S.O.;Chang, Y.C.
    • Journal of Biosystems Engineering
    • /
    • v.32 no.4
    • /
    • pp.215-222
    • /
    • 2007
  • In the study, the cone index, the cohesion and the internal friction angle of soil were measured before and after tillage in order to suggest relative improvement in soil properties by comparing the two measured values before and after tillage. The tillage methods tested in the study were five combinations of plowing and rotovating; one plow tillage operation, one plow followed by one rotary, one plow followed by two rotary, one rotary without plow and two rotary without plow. The experiments were performed in a soil bin in Sunggyunkwan Univ. and in four selected test fields in Yeoju, Seodun-Dong, Suwon (especially, two different fields) and Chungju. In general, the internal friction angle and cohesion of soil increased with the increase of soil compaction. After applying the tillage operations, the internal friction angle reduced by 14 degree and the cohesion decreased up to about $2.2N/cm^2$ on the soil bin in comparison with those before tillage. The two values, however, reduced by 9 degree and up to about $1.0N/cm^2$ on the tested fields. The CIs for all the tillage operations on the soil bin and on 4 different test fields were decreased by 800 kPa in comparison with those before tillage. The best combination of tillage operations for decreasing the CIs of soil was one plow operation followed by one rotary. The CIs for one plow operation followed by two rotary were slightly higher than that for one plow operation followed by one rotary because one plow operation followed by two rotary crushed down the soil excessively, so that the porosity of soil decreased.