• Title/Summary/Keyword: Internal model optimization

Search Result 123, Processing Time 0.021 seconds

A Novel Control Scheme Based on the Synchronous Frame for APF

  • Wang, Yifan;Zheng, Hong;Wang, Ruoyin;Zhu, Wen
    • Journal of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.1553-1562
    • /
    • 2017
  • For the purpose of enhancing the performance of the shunt active power filter (APF), this paper presents a novel Fast Weighted Compound Control (FWCC) strategy based on the synchronous frame. In this control strategy, the proposed new repetitive controller can work faster and more stably by reducing the internal model cycle and introducing a damping coefficient. In addition, the harmonic detector can be removed to simplify the structure of the APF owing to the improvements. Furthermore, a proportional-integral (PI) controller is added to work in parallel with the repetitive controller by using a weighted ratio. Then, a convergence speed analysis and design algorithm are given in detail. Simulation and experimental results show that the harmonic distortion is reduced from 2.91% to 1.89%. In addition, the content for each of the characteristic harmonic orders has decreased by more than three times.

Analytical design of constraint handling optimal two parameter internal model control for dead-time processes

  • Tchamna, Rodrigue;Qyyum, Muhammad Abdul;Zahoor, Muhammad;Kamga, Camille;Kwok, Ezra;Lee, Moonyong
    • Korean Journal of Chemical Engineering
    • /
    • v.36 no.3
    • /
    • pp.356-367
    • /
    • 2019
  • This work presents an advanced and systematic approach to analytically design the optimal parameters of a two parameter second-order internal model control (IMC) filter that satisfies operational constraints on the output process, the manipulated variable as well as rate of change of the manipulated variable, for a first-order plus dead time (FOPDT) process. The IMC parameters are designed to minimize a control objective function composed of the weighted sum of the error between the process variable and the set point, and the rate of change of the manipulated variable, and to satisfy the desired constraints. The feasible region of the constrained IMC control parameters was graphically analyzed, as the process parameters and the constraints varied. The resulting constrained IMC control parameters were also used to find the corresponding industrial proportional-integral controller parameters of a Smith predictor structure.

Study of Instruction-level Current Consumption Modeling and Optimization for Low Power Microcontroller (저전력 마이크로컨트롤러를 위한 명령어 레벨의 소모전류 모델링 및 최적화에 대한 연구)

  • Eom Heung-Sik;Kim Keon-Wook
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.43 no.5 s.311
    • /
    • pp.1-7
    • /
    • 2006
  • This paper presents experimental instruction-level current consumption model for low power microcontroller ATmega128. The accessibility of instruction for internal memory decides power consumption of the microcontroller as much as 17% of difference between access instruction and non-access instruction. The power consumption for the given program will be increased in the proportional to the ratio of memory access instruction and lower level memory access in the hierarchy. Throughout the current consumption model, the power consumption can be predicted and optimized in the direction of reducing the frequency memory access. Also, the various optimization methods are introduced in terms of software and hardware viewpoints.

Conceptual design of small modular reactor driven by natural circulation and study of design characteristics using CFD & RELAP5 code

  • Kim, Mun Soo;Jeong, Yong Hoon
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2743-2759
    • /
    • 2020
  • A detailed computational fluid dynamics (CFD) simulation analysis model was developed using ANSYS CFX 16.1 and analyzed to simulate the basic design and internal flow characteristics of a 180 MW small modular reactor (SMR) with a natural circulation flow system. To analyze the natural circulation phenomena without a pump for the initial flow generation inside the reactor, the flow characteristics were evaluated for each output assuming various initial powers relative to the critical condition. The eddy phenomenon and the flow imbalance phenomenon at each output were confirmed, and a flow leveling structure under the core was proposed for an optimization of the internal natural circulation flow. In the steady-state analysis, the temperature distribution and heat transfer speed at each position considering an increase in the output power of the core were calculated, and the conceptual design of the SMR had a sufficient thermal margin (31.4 K). A transient model with the output ranging from 0% to 100% was analyzed, and the obtained values were close to the Thot and Tcold temperature difference value estimated in the conceptual design of the SMR. The K-factor was calculated from the flow analysis data of the CFX model and applied to an analysis model in RELAP5/MOD3.3, the optimal analysis system code for nuclear power plants. The CFX analysis results and RELAP analysis results were evaluated in terms of the internal flow characteristics per core output. The two codes, which model the same nuclear power plant, have different flow analysis schemes but can be used complementarily. In particular, it will be useful to carry out detailed studies of the timing of the steam generator intervention when an SMR is activated. The thermal and hydraulic characteristics of the models that applied porous media to the core & steam generators and the models that embodied the entire detail shape were compared and analyzed. Although there were differences in the ability to analyze detailed flow characteristics at some low powers, it was confirmed that there was no significant difference in the thermal hydraulic characteristics' analysis of the SMR system's conceptual design.

Refined optimal passive control of buffeting-induced wind loading of a suspension bridge

  • Domaneschi, M.;Martinelli, L.
    • Wind and Structures
    • /
    • v.18 no.1
    • /
    • pp.1-20
    • /
    • 2014
  • Modern design of long suspension bridges must satisfy at the same time spanning very long distances and limiting their response against several external loads, even if of high intensity. Structural Control, with the solutions it provides, can offer a reliable contribution to limit internal forces and deformations in structural elements when extreme events occur. This positive aspect is very interesting when the dimensions of the structure are large. Herein, an updated numerical model of an existing suspension bridge is developed in a commercial finite element work frame, starting from original data. This model is used to reevaluate an optimization procedure for a passive control strategy, already proven effective with a simplified model of the buffeting wind forces. Such optimization procedure, previously implemented with a quasi-steady model of the buffeting excitation, is here reevaluated adopting a more refined version of the wind-structure interaction forces in which wind actions are applied on the towers and the cables considering drag forces only. For the deck a more refined formulation, based on the use of indicial functions, is adopted to reflect coupling with the bridge orientation and motion. It is shown that there is no variation of the previously identified optimal passive configuration.

Isogeometric Topological Shape Optimization of Structures using Heaviside Enrichment (헤비사이드 강화를 이용한 구조물의 아이소-지오메트릭 위상 최적설계)

  • Ahn, Seung-Ho;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.1
    • /
    • pp.79-87
    • /
    • 2013
  • An isogeometric topological shape optimization method is developed using the level sets and Heaviside enrichments. In the level set method, the initial domain is kept fixed and its boundary is represented by an implicit moving boundary embedded in the level set functions, which facilitates to handle complicated topological shape changes. The Heaviside enrichment improves the isogeometric analysis by adding some enrichment functions to model the internal boundaries. The proposed topological shape optimization method has several benefits: exact geometric models can be obtained using the isogeometric approach and the limitation of tensor-product patches can be overcome using the Heaviside enrichments to represent the internal voids. Even in a single patch, discontinuous displacement fields as well as smooth stress field can be obtained. Since the level sets offer the implicit moving boundary inside the domain, it is easy to represent the topological shape variations in the isogeometric analysis using Heaviside enrichments.

Intracellular Flux Prediction of Recombinant Escherichia coli Producing Gamma-Aminobutyric Acid

  • Sung Han Bae;Myung Sub Sim;Ki Jun Jeong;Dan He;Inchan Kwon;Tae Wan Kim;Hyun Uk Kim;Jong-il Choi
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.4
    • /
    • pp.978-984
    • /
    • 2024
  • Genome-scale metabolic model (GEM) can be used to simulate cellular metabolic phenotypes under various environmental or genetic conditions. This study utilized the GEM to observe the internal metabolic fluxes of recombinant Escherichia coli producing gamma-aminobutyric acid (GABA). Recombinant E. coli was cultivated in a fermenter under three conditions: pH 7, pH 5, and additional succinic acids. External fluxes were calculated from cultivation results, and internal fluxes were calculated through flux optimization. Based on the internal flux analysis, glycolysis and pentose phosphate pathways were repressed under cultivation at pH 5, even though glutamate dehydrogenase increased GABA production. Notably, this repression was halted by adding succinic acid. Furthermore, proper sucA repression is a promising target for developing strains more capable of producing GABA.

Numerical Research on Suppression of Thermally Induced Wavefront Distortion of Solid-state Laser Based on Neural Network

  • Liu, Hang;He, Ping;Wang, Juntao;Wang, Dan;Shang, Jianli
    • Current Optics and Photonics
    • /
    • v.6 no.5
    • /
    • pp.479-488
    • /
    • 2022
  • To account for the internal thermal effects of solid-state lasers, a method using a back propagation (BP) neural network integrated with a particle swarm optimization (PSO) algorithm is developed, which is a new wavefront distortion correction technique. In particular, by using a slab laser model, a series of fiber pumped sources are employed to form a controlled array to pump the gain medium, allowing the internal temperature field of the gain medium to be designed by altering the power of each pump source. Furthermore, the BP artificial neural network is employed to construct a nonlinear mapping relationship between the power matrix of the pump array and the thermally induced wavefront aberration. Lastly, the suppression of thermally induced wavefront distortion can be achieved by changing the power matrix of the pump array and obtaining the optimal pump light intensity distribution combined using the PSO algorithm. The minimal beam quality β can be obtained by optimally distributing the pumping light. Compared with the method of designing uniform pumping light into the gain medium, the theoretically computed single pass beam quality β value is optimized from 5.34 to 1.28. In this numerical analysis, experiments are conducted to validate the relationship between the thermally generated wavefront and certain pumping light distributions.

Application of Artificial Neural Network for Optimum Controls of Windows and Heating Systems of Double-Skinned Buildings (이중외피 건물의 개구부 및 난방설비 제어를 위한 인공지능망의 적용)

  • Moon, Jin-Woo;Kim, Sang-Min;Kim, Soo-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.8
    • /
    • pp.627-635
    • /
    • 2012
  • This study aims at developing an artificial neural network(ANN)-based predictive and adaptive temperature control method to control the openings at internal and external skins, and heating systems used in a building with double skin envelope. Based on the predicted indoor temperature, the control logic determined opening conditions of air inlets and outlets, and the operation of the heating systems. The optimization process of the initial ANN model was conducted to determine the optimal structure and learning methods followed by the performance tests by the comparison with the actual data measured from the existing double skin envelope. The analysis proved the prediction accuracy and the adaptability of the ANN model in terms of Root Mean Square and Mean Square Errors. The analysis results implied that the proposed ANN-based temperature control logic had potentials to be applied for the temperature control in the double skin envelope buildings.

Equivalent Circuit Model Parameter Extraction for Packaged Bipolar Transistors (패키지된 바이폴라 트랜지스터의 등가회로 모델 파라미터 추출)

  • Lee Seonghearn
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.12
    • /
    • pp.21-26
    • /
    • 2004
  • In this paper, a direct method is developed to extact RF equivalent circuit of a packaged BJT without optimization. First, parasitic components of plastic package are removed from measured S-parameters using open and short package patterns. Using package do-embedded S-parameters, a direct and simple method is proposed to extract bonding wire inductance and chip pad capacitance between package lead and chip pad. The small-signal model parameters of internal BJT are next determined by Z and Y-parameter formula derived from RF equivalent circuit. The modeled S-parameters of packaged BJT agree well with measured ones, verifying the accuracy of this new extraction method.