• Title/Summary/Keyword: Internal model controller

Search Result 118, Processing Time 0.024 seconds

Model Tracking Dual Stochastic Controller Design Under Irregular Internal Noises

  • Lee Jong-Bok;Cho Yun-Hyun;Ji Tae-Young;Heo Hoon
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.652-657
    • /
    • 2006
  • Although many methods about the control of irregular external noise have been introduced and implemented, it is still necessary to design a controller that will be more effective and efficient methods to exclude for various noises. Accumulation of errors due to model tracking, internal noises (thermal noise, shot noise and 1/f noise) that come from elements such as resistor, diode and transistor etc. in the circuit system and numerical errors due to digital process often destabilize the system and reduce the system performance. New stochastic controller is adopted to remove those noises using conventional controller simultaneously. Design method of a model tracking dual controller is proposed to improve the stability of system while removing external and internal noises. In the study, design process of the model tracking dual stochastic controller is introduced that improves system performance and guarantees robustness under irregular internal noises which can be created internally. The model tracking dual stochastic controller utilizing F-P-K stochastic control technique developed earlier is implemented to reveal its performance via simulation.

Identification of the Relationship Between the Discrete TDCIM and the Discrete PID Controller (이산 TDCIM과 이산 PID 제어기 사이의 관계 규명)

  • Park, Sang Hyun;Jeong, Eui In;Shin, Dong Gwan
    • Journal of Drive and Control
    • /
    • v.14 no.4
    • /
    • pp.23-28
    • /
    • 2017
  • Time-delay control with internal model (TDCIM) is the controller for robot manipulators that applies the time-delay estimation and the concept of internal model control (IMC). TDCIM is robust against unknown dynamics and non-linear friction like coulomb friction and static friction. It is simple and computationally efficient. This study presents the relationship between the discrete TDCIM and the discrete PID controller. The PID controller is the most popular control law in the real application. But often the PID controller can be difficult to achieve the desired level of control performance. The result in this study provides a good candidate solution to these situations.

A Study on the Design of Linear PID Controller (선형 PID 제어기 설계에 관한 연구)

  • Cho, Joon-Ho
    • Journal of Industrial Convergence
    • /
    • v.16 no.2
    • /
    • pp.33-39
    • /
    • 2018
  • This paper describes the design method of the linear PID controller and proposed the design method in the future. The first PID design method is to ensure phase margin and gain margin. This method guarantees stability by designing in the frequency domain. The second method is an internal model control method. This method is to design the PID controller using the parameters of the internal model after identifying the internal model for the control model. Therefore, this method has a strong disturbance characteristic. Finally, a proposed Cascade and smith-Predictor controller. The combination of the cascade controller and the smith-predator of this method is a controller structure that has two advantages: robust control and optimal control. This method can obtain the performance evaluation index as the optimal controller design method. This PID controller design method becomes the basis of the nonlinear method and is being continuously studied.

Design of Generalized Model-based Disturbance Rejection Controller with Two Loops (두 개의 루프를 갖는 일반화된 모델 기반의 외란 제거 제어기 설계)

  • 최현택;김봉근;엄광식
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.5
    • /
    • pp.385-394
    • /
    • 2004
  • This paper proposes the generalized structure of a model-based disturbance rejection controller called a Robust Internal-loop Compensator (RIC). The framework consists of the RIC in the internal-loop to eliminate disturbances and a feedback controller in the external-loop to achieve nominal control performance. As the main contribution of this paper, we redefine the design problem of the RIC as a regulation control problem, then show that this new definition with the RIC structure provides more design flexibility and less implementation constraints. This is verified through a comparative structural analysis with Disturbance Observer (DOB) and Adaptive Robust Control (ARC). Two design examples of the RIC are given, along with practical issues that should be considered in the design procedure. The proposed framework is demonstrated by simulations of a rotary-type motor and experiments with a linear-type motor system.

Transient Response Improvement of Multiple Model/Controller IMC Using Recurrent Neural Networks (재귀신경망을 이용한 다중모델/제어기 IMC의 과도 응답 개선)

  • O, Won-Geun;Jo, Seong-Eon;So, Ji-Yeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.7
    • /
    • pp.582-588
    • /
    • 2001
  • The Multiple Model/Controller IMC(MMC-IMC) is a model-based control method which uses a set of model/controller pairs rather than a single model/controller to handle all possible operating conditions in the IMC control structure. During operation, one model/controller pair that best fit, for current plant situation is chosen by the switching algorithm. The major drawback of the switching controller is the bad transient performance due to the model error and the use fo linear controller for nonlinear plants. In this paper, we propose a method that transient response of the MMC-IMC using two recurrent neural networks. Simulation result shows that the proposed method represents better performance than the usual MMC-IMC`s.

  • PDF

Robust Internal Model Control of Three-Phase Active Power Filter for Stable Operation in Electric Power Equipment (전력설비의 안정한 운용을 위한 3상 능동전력필터의 강인한 내부모델제어)

  • Park, Ji-Ho;Kim, Dong-Wan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.10
    • /
    • pp.1487-1493
    • /
    • 2013
  • A new simple control method for active power filter, which can realize the complete compensation of harmonics is proposed. In the proposed scheme, a model-based digital current control strategy is presented. The proposed control system is designed and implemented in a form referred to as internal model control structure. This method provides a convenient way for parameterizing the controller in term of the nominal system model, including time-delays. As a result, the resulting controller parameters are directly set based on the power circuit parameters, which make tuning of the controllers straightforward task. In the proposed control algorithm, overshoots and oscillations due to the computation time delay is prevented by explicit incorporating of the delay in the controller transfer function. In addition, a new compensating current reference generator employing resonance model implemented by a DSP(Digital Signal Processor) is introduced. Resonance model has an infinite gain at resonant frequency, and it exhibits a band-pass filter. Consequently, the difference between the instantaneous load current and the output of this model is the current reference signal for the harmonic compensation.

High-accuracy Motion Control of Linear Synchronous Motor (선형 동기 모터의 정밀모션 제어)

  • Jeong Seong Hyun;Sung Jun Yup;Park Jung Il
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.6 s.171
    • /
    • pp.76-82
    • /
    • 2005
  • In this paper, the pole placement controller based on the Robust Internal-loop Compensator (RIC) structure, which has inherent structural equivalence to disturbance observer, is proposed to control a linear positioning system. This controller has the advantage to easily select controller gains by using pole placement without loss of that of original RIC structure. The principal is to construct the pole placement controller for a nominal internal model instead of unknown real plant. Using linear motion experiment showed the effectiveness of the proposed controller.

Predictive and Preventive Maintenance using Distributed Control on LonWorks/IP Network

  • Song, Ki-Won
    • International Journal of Safety
    • /
    • v.5 no.2
    • /
    • pp.6-11
    • /
    • 2006
  • The time delay in servo control on LonWorks/IP Virtual Device Network (VDN) is highly stochastic in nature. LonWorks/IP VDN induced time delay deteriorates the performance and stability of the real-time distributed control system and hinders an effective preventive and predictive maintenance. Especially in real-time distributed servo applications on the factory floor, timely response is essential for predictive and preventive maintenance. In order to guarantee the stability and performance of the system for effective preventive and predictive maintenance, LonWorks/IP VDN induced time delay needs to be predicted and compensated for. In this paper position control simulation of DC servo motor using Zero Phase Error Tracking Controller (ZPETC) as a feedforward controller, and Internal Model Controllers (IMC) based on Smith predictor with disturbance observer as a feedback controller is performed. The validity of the proposed control scheme is demonstrated by comparing the IMC based on Smith predictor with disturbance observer.

A Novel Robust Controller Design using Robust Internal-loop Compensator (강인 내부 보상기를 이용한 새로운 강인 제어기 설계)

  • Choi, Hyun-Taek;Suh, Il-Hong
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.8
    • /
    • pp.987-995
    • /
    • 1999
  • A new robust controller design methodology for single-input single-output systems is proposed, where the proposed controller consists of a conventional or optimal servo controller at the outer loop as well as the robust internal-loop compensator(RIC) to eliminate the model uncertainty and external disturbance. It is shown that RIC with finite gain can make actual systems be nominal models within a prespecified error bound. And, it is also shown that RIC-based system is robustly stable regardless of input saturation. Several numerical examples are illustrated to show validities of the proposed robust controller.

  • PDF

Disturbance Observer based Internal Model Controller Design : Applications to Tracking Control of Optical Disk Drive (외란 관측기에 기초한 내부 모델 제어기 설계 : 광학 디스크 드라이브의 추종 제어에의 적용)

  • Choi, Hyun-Taek;Seo, Il-Hong
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.2
    • /
    • pp.159-167
    • /
    • 1999
  • A digital tracking controller is proposed for a precise positioning control under a large repetitive and/or non repetitive disturbances. The proposed control system. Numerical Examples are illustrated for a precise head positioning of optical disk drives regardless of a torque disturbance and/or output disturbance.

  • PDF