• Title/Summary/Keyword: Internal membrane

Search Result 545, Processing Time 0.029 seconds

Clinical Experiences of High-Risk Pulmonary Thromboembolism Receiving Extracorporeal Membrane Oxygenation in Single Institution

  • Jang, Joonyong;Koo, So-My;Kim, Ki-Up;Kim, Yang-Ki;Uh, Soo-Taek;Jang, Gae-Eil;Chang, Wonho;Lee, Bo Young
    • Tuberculosis and Respiratory Diseases
    • /
    • v.85 no.3
    • /
    • pp.249-255
    • /
    • 2022
  • Background: The main cause of death in pulmonary embolism (PE) is right-heart failure due to acute pressure overload. In this sense, extracorporeal membrane oxygenation (ECMO) might be useful in maintaining hemodynamic stability and improving organ perfusion. Some previous studies have reported ECMO as a bridge to reperfusion therapy of PE. However, little is known about the patients that benefit from ECMO. Methods: Patients who underwent ECMO due to pulmonary thromboembolism at a single university-affiliated hospital between January 2010 and December 2018 were retrospectively reviewed. Results: During the study period, nine patients received ECMO in high-risk PE. The median age of the patients was 60 years (range, 22-76 years), and six (66.7%) were male. All nine patients had cardiac arrests, of which three occurred outside the hospital. All the patients received mechanical support with veno-arterial ECMO, and the median ECMO duration was 1.1 days (range, 0.2-14.0 days). ECMO with anticoagulation alone was performed in six (66.7%), and ECMO with reperfusion therapy was done in three (33.3%). The 30-day mortality rate was 77.8%. The median time taken from the first cardiac arrest to initiation of ECMO was 31 minutes (range, 30-32 minutes) in survivors (n=2) and 65 minutes (range, 33-482 minutes) in non-survivors (n=7). Conclusion: High-risk PE with cardiac arrest has a high mortality rate despite aggressive management with ECMO and reperfusion therapy. Early decision to start ECMO and its rapid initiation might help save those with cardiac arrest in high-risk PE.

Antibacterial Effect of Ipyo-san against Methicillin-Resistant Staphylococcus aureus (입효산(立效散)의 Methicillin-Resistant Staphylococcus aureus에 대한 항균활성에 관한 연구)

  • Yoon, Jae-Hong;Choi, Yeun-Ju;Jeong, Seung-Hyun;Shin, Gil-Cho
    • The Journal of Internal Korean Medicine
    • /
    • v.34 no.3
    • /
    • pp.278-288
    • /
    • 2013
  • Objectives : Methicillin-resistant Staphylococcus aureus (MRSA) has a cephalosporin and beta-lactam antibiotic-resistant strains. MRSA is one of the major pathogens causing hospital infection and the isolation ratio of MRSA has gradually increased. Consequently, increased resistance to antibiotics is causing serious problems in the world. Therefore, there is a need to develop alternative antimicrobial drugs for the treatment of infectious diseases. Methods : The antibacterial activities of Ipyo-san were evaluated against 2 strains of MRSA and 1 standard Methicillin-susceptible staphylococcus aureus (MSSA) strain by using the disc diffusion method, minimal inhibitory concentrations (MIC) assay, colorimetric assay using MTT test, checkerboard dilution test and time-kill assay performed under dark. Results : The MIC of Ipyo-san water extract against S. aureus strains ranged from 1000 to $2,000{\mu}g/ml$, so we confirmed that it had a strong antibacterial effect. Also, the combinations of Ipyo-san water extract and conventional antibiotics exhibited improved inhibition of MRSA with synergy effect. We suggest that Ipyo-san water extract against MRSA has antibacterial activity so it has potential as alternatives to antibiotic agents. For the combination test, we used Triton X-100 (TX) and DCCD for measurement of membrane permeability and inhibitor of ATPase. As a result, antimicrobial activity of Ipyo-san water extract was affected by the cell membrane. Conclusions : We suggest that the Ipyo-san water extract lead the treatment of bacterial infection to solve the resistance and remaining side-effect problems that are the major weak points of traditional antibiotics.

Sublayer assisted by hydrophilic and hydrophobic ZnO nanoparticles toward engineered osmosis process

  • Mansouri, Sina;Khalili, Soodabeh;Peyravi, Majid;Jahanshahi, Mohsen;Darabi, Rezvaneh Ramezani;Ardeshiri, Fatemeh;Rad, Ali Shokuhi
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.11
    • /
    • pp.2256-2268
    • /
    • 2018
  • Hydrophilic and hydrophobic polyethersulfone (PES)-zinc oxide (ZnO) sublayers were prepared by loading of ZnO nanoparticles into PES matrix. Both porosity and hydrophilicity of the hydrophilic sublayer were increased upon addition of hydrophilic ZnO, while these were decreased for the hydrophobic sublayer. In addition, the results demonstrated that the hydrophilic membrane exhibited smaller structural parameter (S value or S parameter or S), which is beneficial for improving pure water permeability and decreasing mass transfer resistance. In contrast, a higher S parameter was obtained for the hydrophobic membrane. With a 2 M NaCl as DS and DI water as FS, the pure water flux of hydrophilic TFN0.5 membrane was increased from $21.02L/m^2h$ to $30.06L/m^2h$ and decreased for hydrophobic TFN0.5 membrane to $14.98L/m^2h$, while the salt flux of hydrophilic membrane increased from $10.12g/m^2h$ to $17.31g/m^2h$ and decreased for hydrophobic TFN0.5 membrane to $3.12g/m^2h$. The increment in pure water permeability can be ascribed to reduction in S parameter, which resulted in reduced internal concentration polarization (ICP). The current study provides a feasible and low cost procedure to decrease the ICP in FO processes.

Experimental Study on Structural and Functional Characteristics of Surface-Modified Porous Membrane (다공성 멤브레인의 표면 개질에 따른 구조 및 성능 특성에 대한 실험 연구)

  • Lee, Sang Hyuk;Kim, Kiwoong
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.1
    • /
    • pp.50-56
    • /
    • 2021
  • With the advances in recent nanotechnology, mass transport phenomena have been receiving large attention both in academic researches and industrial applications. Nonetheless, it is not clearly determined which parameters are dominant at nanoscale mass transport. Especially, membrane is a kind of technology that use a selective separation to secure fresh water. The development of great separation membrane and membrane-based separation system is an important way to solve existing water resource problems. In this study, glass fiber-based membranes which are treated by graphene oxide (GO), poly-styrene sulfonate (GOP) and sodium dodecyl sulfate (GPS) were fabricated. Mass transport parameters were investigated in terms of material-specific and structure-specific dominance. The 3D structural information of GO, GOP, and GPS was obtained by using synchrotron X-ray nano tomography. In addition, electrostatic characteristic and water absorption rate of the membranes were investigated. As a result, we calculated internal structural information using Tomadakis-Sotrichos model, and we found that manipulation of surface characteristics can improve spacer arm effect, which means enhancement of water permeability by control length of ligand and surface charge functionality of the membrane.

A Study on the Mechanical Properties of Polymer Electrolyte Membrane according to Temperature (온도에 따른 고분자전해질막의 기계적 특성에 관한 연구)

  • EO, JUNWOO;KIM, SEUNGHWAN;SEO, YOUNGJIN;KO, HYUNGJONG;HWANG, CHULMIN;JUNG, YOUNGGUAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.5
    • /
    • pp.566-573
    • /
    • 2022
  • In this study, the mechanical properties of the polymer electrolyte membrane according to the temperature were studied. The test specimens of polymer electrolyte membrane were heat treated at 40℃, 60℃, 80℃, 100℃, and 120℃, and then the tensile tests were performed. As results of this study, the residual stress of the polymer electrolyte membrane was removes by the heat treatment and the elastic modulus decreased due to the decrease in internal energy. In addition, in the plastic region, the mechanical properties and crystallization rate of the polymer electrolyte membrane increased in proportion according to increase of the heat treatment temperature.

Continuous high cell density culture of Anaerobiospirillum succiniciproducens with membrane filtration for the production of succinic acid

  • Lee, Pyeong-Cheon;Lee, U-Gi;Lee, Sang-Yeop;Jang, Ho-Nam
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.338-341
    • /
    • 2000
  • An internal membrane bioreactor system was employed for continuous succinic ac id production from glucose in order to prove its performance and practicality. Succinic acid-producing Anaerobiospirillum succiniciproducens required more $CO_2$ for the proper growth and succinic acid production in cell recycled continuous culture than in batch culture. The maximum productivity obtained in cell recycled continuous culture was about 3.3 g/L-h which was ca. 3.3 times higher than that obtained in batch culture.

  • PDF

A study on the structural behaviors of air-pressurized vertical arch (공기로 지지되는 수직 아치의 구조거동에 관한 연구)

  • 김재열;이장복;권택진
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.274-279
    • /
    • 1998
  • The structural behaviors of a arch composed of flexible membrane are investigated. The membrane is considered as thin shell with internal pressure during FEM analysis by using ABAQUS. In the paper, a wind load and uniformly distributed vertical load are considered. As a vertical load, snow loads including applied over all and half of the structure are introduced. The ends of arch are fixed to the ground. Load-Deflections relationship, buckling mode of the structure are presented.

  • PDF

Transport of Phenol in Waste Water Through Liquid Surfactant Membrane (폐수중 액체막에 의한 페놀의 이동)

  • 우인성;김병석;김윤선
    • Journal of the Korean Society of Safety
    • /
    • v.5 no.3
    • /
    • pp.39-43
    • /
    • 1990
  • The transport of phenol from waste water through the liquid surfactant membrane containing Aliquat 336 as a carrier was analyzed by a theoretical model. Extraction experiments was carried out to investigate the effect of process parameters, such as mixing intensity, concentration of sodium hydroxide in internal aqueous solution, and counter anions, and initial phenol concentration in waste water at $25^{\circ}C$. It was found that transport rate of phenol increased with increasing pH differents. The transport rate of phenol in waste water was influenced by counter anions.

  • PDF

Source And Identity Supporting The Theory of Materiality of Tri-Energizer in Nei Jing ("내경(內經)"에 나타난 삼초유형(三焦有形)의 근거(根據) 및 삼초(三焦)의 실체(實體))

  • Yoon, Chang-Yeol
    • Journal of Korean Medical classics
    • /
    • v.25 no.4
    • /
    • pp.57-63
    • /
    • 2012
  • Objective & Method : We investigated the identity of tri-energizer, which was originally described in Huang Di Nei Jing and claimed by traditional scholars, and drew the following conclusions. Result & Conclusion : According to Huang Di Nei Jing tri-energizer is one of the six hollow-organs and is called hollow organs for digestion and elimination, water guffer organ, or solitary hollow organ. It is believed that tri-energizer is regarded as the existing entity based on following several different sources; it functions as the course of channels, regulates wind and link and physiological function-especially intrinsic function of upper, middle, lower internal organs. It also controls syndromes and dysfunction of an illness, the surface of the body, and the cracked surface of the skin. Finally, bold and timidity depend on the tri-energizer. Experts determined the true nature of tri-energizer types. Experts include: Yu Tuan from the Ming dynasty, Tang Jong Hai and Ye Lin from the Qing dynasty, and Zhang Xi Chun from the Zhunghua Minguo period. These experts' claims are based on shape and forms of tri-energizer. Our examinations of anatomical and physiological basis on tri-energizers showed that, in a narrow sense, tri-energizer indicates visceral and parietal peritoneum and omentum surrounding the internal organs, and in a broad sense, indicates the overall membrane wrapping around the whole internal organs including five visceral organs and six hollow organs.