• Title/Summary/Keyword: Internal gravity waves

Search Result 17, Processing Time 0.037 seconds

Study of the Characteristics of Internal Waves in the East (Japan) Sea by Synthetic Aperture Radar-ERS-1/2, RADARSAT, and ENVISAT ASAR

  • Kim Duk-jin;Moon Wooil M.
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.689-692
    • /
    • 2004
  • Hydrographic data obtained from several ship experiments have shown that internal waves are frequently observed in the East (Japan) Sea, mostly in the continental slopes located along the western side of the East Sea. It is well known that oceanic internal waves can be detected well in synthetic aperture radar (SAR) images. Interactions between surface capillary-gravity waves and horizontally varying surface currents induced by internal waves produce variations in sea surface roughness which can be detected by SAR. C-band SAR images from ERS, ENVISAT ASAR and RADARSAT have been used to study the characteristics of internal waves in the East Sea. The observed properties of internal waves from many SAR images were compared and verified from in-situ measurements and theories.

  • PDF

Unsteady Interaction of the Surface Gravity Waves with the Nonuniform Current

  • Lee, Kwi-Joo;Kim, Kyoung-Hwa;Ra, Young-Kon;Shermeneva, M.A.;Shugan, I.V.
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.3
    • /
    • pp.34-39
    • /
    • 2002
  • 본 논문에서는 수면파(Surface wave)와 수중파 (Internal wave)간의 동적 상관관계에 관하여 수행된 연구결과를 정리하였다. 표면파의 비선형 문제는 파의 경사매개변수를 2차원으로 가정하여 해석하였으며, Cauchy 문제는 불균일 조류상의 균일 수면중력파에 대하여 해석하였다. 또한, 파의 경사, 주기의 범위(Frequency range) 그리고 자유표면하의 조류의 분포들간의 조화에 대한 연구가 수행되었으며 해류 및 이동파와 연계되어 수중파의 최전 후방에 형성될 수 있는 정적 파형 (Steady wave pattern)이 수면파형에 포함되었다.

Seasonal Variations of Mesospheric Gravity Waves Observed with an Airglow All-sky Camera at Mt. Bohyun, Korea (36° N)

  • Kim, Yong-Ha;Lee, Chang-Sup;Chung, Jong-Kyun;Kim, Jeong-Han;Chun, Hye-Yeong
    • Journal of Astronomy and Space Sciences
    • /
    • v.27 no.3
    • /
    • pp.181-188
    • /
    • 2010
  • We have carried out all-sky imaging of OH Meinel, $O_2$ atmospheric and OI 557.7 nm airglow layers in the period from July of 2001 through September of 2005 at Mt. Bohyun, Korea ($36.2^{\circ}$ N, $128.9^{\circ}$ E, Alt = 1,124 m). We analyzed the images observed during a total of 153 clear moonless nights and found 97 events of band-type waves. The characteristics of the observed waves (wavelengths, periods, and phase speeds) are consistent with internal gravity waves. The wave occurrence shows an approximately semi-annual variation, with maxima near solstices and minima near equinoxes, which is consistent with other studies of airglow wave observations, but not with those of mesospheric radar/lidar observations. The observed waves tended to propagate westward during fall and winter, and eastward during spring and summer. Our ray tracing study of the observed waves shows that majority of the observed waves seemed to originate from mesospheric altitudes. The preferential directions and the apparent source altitudes can be explained if the observed waves are secondary waves generated from primary waves that have been selected by the filtering process and break up at the mesospheric altitudes.

Recycling of Suspended Particulates by Atmospheric Boundary Depth and Coastal Circulation

  • Choi, Hyo
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.11a
    • /
    • pp.19-26
    • /
    • 2003
  • The dispersion of recycled particulates in the complex coastal terrain containing Kangnung city, Korea was investigated using a three-dimensional non-hydrostatic numerical model and lagrangian particle model (or random walk model). The results show that particulates at the surface of the city that float to the top of thermal internal boundary layer (TIBL) are then transported along the eastern slope of the mountains with the passage of sea breeze and nearly reach the top of the mountains. Those particulates then disperse eastward at this upper level over the coastal sea and finally spread out over the open sea. Total suspended particulate (TSP) concentration near the surface of Kangnung city is very low. At night, synoptic scale westerly winds intensify due to the combined effect of the synoptic scale wind and land breeze descending the eastern slope of the mountains toward the coast and further seaward. This increase in speed causes development of internal gravity waves and a hydraulic jump up to a height of about 1km above the surface over the city. Particulate matter near the top of the mountains also descends the eastern slope of the mountains during the day, reaching the central city area and merges near the surface inside the nocturnal surface inversion layer (NSIL) with a maximum ground level concentration of TSP occurring at 0300 LST. Some particulates were dispersed following the propagation area of internal gravity waves and others in the NSIL are transported eastward to the coastal sea surface, aided by the land breeze. The following morning, particulates dispersed over the coastal sea from the previous night, tend to return to the coastal city of Kangnung with the sea breeze, developing a recycling process and combine with emitted surface particulates during the morning. These processes result in much higher TSP concentration. In the late morning, those particulates float to the top of the TIBL by the intrusion of the sea breeze and the ground level TSP concentration in the city subsequently decreases.

  • PDF

Internal Waves of a Two-Layer Fluid with Free Surface over a Semi-circular bump

  • Choi J. W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.126-131
    • /
    • 1995
  • In this paper we study steady capillary-gravity waves in a two-layer fluid bounded above by a free surface and below by a horizontal rigid boundary with a small obstruction, Two critical speeds for the waves are obtained. Near the smaller critical speed, the derivation of the usual forced KdV equation (FKdV) fails when the coefficient of the nonlinear term in the FKdV vanishes. To overcome this difficulty, a new equation called a forced extended KdV equation (FEKdV) governing interfacial wave forms is obtained by a refined asymptotic method. Various solutions and numerical results of this equation are presented.

  • PDF

Recycling of Suspended Particulates by Atmospheric Boundary Depth and Coastal Circulation (대기경계층과 연안순환에 의한 부유입자의 재순환)

  • Choe, Hyo
    • Journal of Environmental Science International
    • /
    • v.13 no.8
    • /
    • pp.721-731
    • /
    • 2004
  • The dispersion of suspended particulates in the coastal complex terrain of mountain-inland basin (city)-sea, considering their recycling was investigated using three-dimensional non-hydrostatic numerical model and lagrangian particle model (or random walk model). Convective boundary layer under synoptic scale westerly wind is developed with a thickness of about I km over the ground in the west of the mountain, while a thickness of thermal internal boundary layer (TIBL) is only confined to less than 200m along the eastern slope of the mountain, below an easterly sea breeze circulation. At the mid of the eastern slop of the mountain, westerly wind confronts easterly sea breeze, which goes to the height of 1700 m above sea level and is finally eastward return flow toward the sea. At this time, particulates floated from the ground surface of the city to the top of TIBL go along the eastern slope of the mountain in the passage of sea breeze, being away the TIBL and reach near the top of the mountain. Then those particulates disperse eastward below the height of sea-breeze circulation and widely spread out over the coastal sea. Total suspended particulate concentration near the ground surface of the city is very low. On the other hand, nighttime radiative cooling produces a shallow nocturnal surface inversion layer (NSIL) of 200 m thickness over the inland surface, but relatively thin thickness less than 100m is found near the mountain surface. As synoptic scale westerly wind should be intensified under the association of mountain wind along the eastern slope of mountain to inland plain and further combine with land-breeze from inland plain toward sea, resulting in strong wind as internal gravity waves with a hydraulic jump motion bounding up to about 1km upper level in the atmosphere in the west of the city and becoming a eastward return flow. Simultaneously, wind near the eastern coastal side of the city was moderate. Since the downward strong wind penetrated into the city, the particulate matters floated near the top of the mountain in the day also moved down along the eastern slope of the mountain, reaching the. downtown and merging in the ground surface inside the NSIL with a maximum ground level concentration of total suspended particulates (TSP) at 0300 LST. Some of them were bounded up from the ground surface to the 1km upper level and the others were forward to the coastal sea surface, showing their dispersions from the coastal NSIL toward the propagation area of internal gravity waves. On the next day at 0600 LST and 0900 LST, the dispersed particulates into the coastal sea could return to the coastal inland area under the influence of sea breeze and the recycled particulates combine with emitted ones from the ground surface, resulting in relatively high TSP concentration. Later, they float again up to the thermal internal boundary layer, following sea breeze circulation.

Characteristics of Atmospheric Circulation in Sokcho Coast (속초연안에서 대기순환의 특성)

  • Choi Hyo
    • Journal of Environmental Science International
    • /
    • v.14 no.1
    • /
    • pp.41-51
    • /
    • 2005
  • Using three-dimensional non-hydrostatical numerical model with one way double nesting technique, atmo­spheric circulation in the mountainous coastal region in summer was investigated from August 13 through 15, 1995. During the day, synoptic westerly wind blows over Mt. Mishrung in the west of a coastal city, Sokcho toward the East Sea, while simultaneously, easterly upslope wind combined with both valley wind from plain (coast) toward mountain and sea-breeze from sea toward inland coast blows toward the top of the mountain. Two different directional wind systems confront each other in the mid of eastern slope of the mountain and the upslope wind goes up to the height over 2 km, becoming an easterly return flow in the upper level over the sea and making sea-breeze front with two kinds of sea-breeze circulations of a small one in the coast and a large one in the open sea. Convective boundary layer is developed with a thickness of about 1km over the ground in the upwind side of the mountain in the west and a thickness of thermal internal boundary layer from the coast along the eastern slope of the mountain is only confined to less than 200 m. On the other hand, after sunset, no prohibition of upslope wind generated during the day and downward wind combined with mountain wind from mountain towardplain and land-breeze from land toward under nocturnal radiative cooling of the ground surfaces should intensify westerly downslope wind, resulting in the formation of wind storm. As the wind storm moving down along the eastern slop causes the development of internal gravity waves with hydraulic jump motion in the coast, bounding up toward the upper level of the coastal sea, atmospheric circulation with both onshore and offshore winds like sea-breeze circulation forms in the coastal sea within 70 km until midnight and after that, westerly wind prevails in the coast and open seas.

Evolution of Wind Storm over Coastal Complex Terrain (연안복합지형에서 바람폭풍의 진화)

  • Choi, Hyo;Seo, Jang-Won;Nam, Jae-Cheol
    • Journal of Environmental Science International
    • /
    • v.11 no.9
    • /
    • pp.865-880
    • /
    • 2002
  • As prevailing synoptic scale westerly wind blowing over high steep Mt. Taegulyang in the west of Kangnung coastal city toward the Sea of Japan became downslope wind and easterly upslope wind combined with both valley wind and sea breeze(valley-sea breeze) also blew from the sea toward the top of the mountain, two different kinds of wind regimes confronted each other in the mid of eastern slope of the mountain and further downward motion of downlsope wind along the eastern slope of the mountain should be prohibited by the upslope wind. Then, the upslope wind away from the eastern slope of the mountain went up to 1700m height over the ground, becoming an easterly return flow in the upper level of the sea. Two kinds of circulations were detected with a small one in the coastal sea and a large one from the coast toward the open sea. Convective boundary layer was developed with a thickness of about 1km over the ground in the upwind side of the mountain in the west, while a thickness of thermal internal boundary layer(TIBL) form the coast along the eastern slope of the mountain was only confined to less than 200m. After sunset, under no prohibition of upslope wind, westerly downslope wind blew from the top of the mountain toward the coastal basin and the downslope wind should be intensified by both mountain wind and land breeze(mountain-land breeze) induced by nighttime radiative cooling of the ground surfaces, resulting in the formation of downslope wind storm. The wind storm caused the development of internal gravity waves with hydraulic jump motion bounding up toward the upper level of the sea in the coastal plain and relatively moderate wind on the sea.

Numerical analysis of resistance and dynamic behavior of gravity cage involving multiple cages of the same internal volume (내부용적이 동일한 여러 개 가두리의 저항과 동적거동에 대한 해석)

  • CHOI, Kyu-Suk;LEE, Chun-Woo;LEE, Da-Yoon;JANG, Yong-Suk
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.56 no.2
    • /
    • pp.83-93
    • /
    • 2020
  • In fisheries, the importance of designing efficient fish cages is being emphasized as aquaculture has become more production than capture fishing. Particularly, the gravity cage system is one of the popular fish cage system in Korea. Currently, gravity cages of various shapes and sizes are being widely designed and installed in offshore and inland seas. The cage is subject to external forces, such as currents and waves, and the shape of the structure and tension on the ropes changes according to these external forces. Thus, it is important to accurately calculate these dynamic behavior, including the external forces and tension on the structure during the design stage. In this study, three types of cage systems with an equal internal volume of 8000 ㎥ were analyzed using mass-spring models and their behavior was interpreted through simulations. These simulations were used to analyze the behavior and tension of the ropes in response to currents and waves to aid in the selection of individual cage sizes for a given total volume. The numerical calculation results indicate that depending on the flow rate, the most resistant system is System 1, which has eight strays, and System 2 and System 3 have 69.4% and 54.8% of the resistance of System 1. Further, total resistance increased as the number of cages increased for all flow rates.