• 제목/요약/키워드: Internal fluids

검색결과 240건 처리시간 0.03초

Two-domain 경계 요소법을 이용한 해양 내부파의 수치적 재현 (Numerical Analysis of Internal Waves in Two-layer Fluids by a Two-domain Boundary Element Method)

  • 구원철;김미근
    • 한국해양공학회지
    • /
    • 제23권4호
    • /
    • pp.6-11
    • /
    • 2009
  • In this study, the internal waves in two-density layered fluids were analyzed using the Numerical Wave Tank (NWT) technique in the frequency domain. The NWT is based on a two-domain Boundary Element Method with the potential fluids using the whole-domain matrix scheme. From the mathematical solution of the two-domain boundary integral equation, two different wave modes could be classified: a surface wave mode and an internal wave mode, and each mode were shown to have a wave number determined by a respective dispersion relation. The magnitudes of the internal waves against surface waves were investigated for various fluid densities and water depths. The calculated results are compared with available theoretical data.

일본동양의학(日本東洋醫學)의 기혈수설(氣血水說)에 관(關)한 고찰(考察) (An A Study on Concepts of ${\ulcorner}$Oi, Blood and Body Fluids${\lrcorner}$)

  • 조기호;강병종;사택첩년;후등박삼;김영석;배형섭;이경섭
    • 대한한방내과학회지
    • /
    • 제18권1호
    • /
    • pp.207-217
    • /
    • 1997
  • The oriental medicine based on the traditional Chinese medicine has developed characteristically according to the history and racial character respectively; China, Korea and Japan. Japan, among these nations, has accepted western medicine earlier than other nations and has tried to compare western and oriental medicine and combine them. In Japanese traditional medicine, it is characteristic that the old medical classics focusing on Sanghannon (傷寒論) and Geumgyeyoryak(金?要略) has developed The recent tendencies of clinical medicine and researches in Korean oriental medicine are mostly about the study of oriental medicine in view of western medicine and the combination of western and oriental medical treatment like Japan. But the study on the Japanese oriental medicine hasn't so far been tried before in Korea. From now on, we should not overlook that a more interest on Japanese oriental medicine will be very useful. Therefore we have surveyed the background of its origin and the process of development of the theory of ${\ulcorner}$Qi, Blood and Body Fluids${\lrcorner}$. What we wish to show in this paper is to provide a source for the basic understanding by explaining a fundamental theory of physiology and pathology of Japanese oriental medicine. Concepts of ${\ulcorner}$Qi, Blood and Body Fluids${\lrcorner}$ suggested by Nangai Yoshimashi in 1792 is the way of thinking that the circulation of 3 factors- ${\ulcorner}$Qi, Blood and Body Fluids${\lrcorner}$ nourish human body. Among these 3 factors, if Qi does not function smoothly, it causes the condition of a disease like Qi-deficiency, imbalance of Qi-distribution or Qi-depression and stasis; in Blood's case, deficiency of Blood and Blood stasis; and as for Body Fluids, stasis of Body Fluids. In the recent trend of study, there's a try to combining the western and oriental medicine, Qi is considered as psychoneurotic system, Blood as circulatory and endocrinologic system and Body Fluids as immunologic system.

  • PDF

FDS 기법과 HCIB법을 이용한 3차원 내면파 수치 모사 (NUMERICAL SIMULATION OF THREE-DIMENSIONAL INTERNAL WAVES USING THE FDS SCHEME ON THE HCIB METHOD)

  • 신상묵
    • 한국전산유체공학회지
    • /
    • 제17권1호
    • /
    • pp.8-15
    • /
    • 2012
  • A code developed using the flux-difference splitting scheme on the hybrid Cartesian/immersed boundary method is applied to simulate three-dimensional internal waves. The material interface is regarded as a moving contact discontinuity and is captured on the basis of mass conservation without any additional treatment across the interface. Inviscid fluxes are estimated using the flux-difference splitting scheme for incompressible fluids of different density. The hybrid Cartesian/immersed boundary method is used to enforce the boundary condition for a moving three-dimensional body. Immersed boundary nodes are identified within an instantaneous fluid domain on the basis of edges crossing a boundary. The dependent variables are reconstructed at the immersed boundary nodes along local normal lines to provide the boundary condition for a discretized flow problem. The internal waves are simulated, which are generated by an pitching ellipsoid near an material interface. The effects of density ratio and location of the ellipsoid on internal waves are compared.

주거환기용 시로코홴의 내부모터 형상에 따른 공력특성 연구 (A STUDY ON AERODYNAMIC CHARACTERISTICS DEPENDING ON SHAPE OF AN INTERNAL MOTOR IN A SIROCCO FAN FOR RESIDENTIAL VENTILATION)

  • 차경훈;김진혁;김광용
    • 한국전산유체공학회지
    • /
    • 제16권4호
    • /
    • pp.1-6
    • /
    • 2011
  • Aerodynamic characteristics depending on the shape of an internal motor in a small-size sirocco fan for residential ventilation have been investigated. For the aerodynamic analyses of the sirocco fan, three-dimensional Reynolds-averaged Navier-Stokes equations are solved with the shear stress transport model for turbulence closure. The flow analyses are performed on hexahedral grids using a finite-volume solver. The validation of the numerical results at steady-state is performed by comparing with experimental data for the pressure and efficiency. In order to investigate the aerodynamic characteristics depending on shape of an internal motor in a sirocco fan, the reference shape is analyzed compared to the case without internal motor. Additionally, two shape parameters, height and width of the internal motor in a sirocco fan, are tested to investigate their effects on the aerodynamic characteristics. The results show that the shape of the internal motor in a sirocco fan is an important factor to improve the aerodynamic performances.

Theoretical and Experimental Studies on Boiling Heat Transfer for the Thermosyphons with Various Helical Grooves

  • Han Kyuil;Cho Dong-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • 제19권8호
    • /
    • pp.1662-1669
    • /
    • 2005
  • Boiling heat transfer characteristics of a two-phase closed thermosyphons with various helical grooves are studied experimentally and a mathematical correlation is developed to predict the performance of such thermosyphons. The study focuses on the boiling heat transfer characteristics of two-phase closed thermosyphons with copper tubes having 50, 60, 70, 80, 90 internal helical grooves. A two-phase closed thermosyphon with plain copper tube having the same inner and outer diameter as those of grooved tubes is also tested for comparison. Water, methanol and ethanol are used as working fluid. The effects of the number of grooves, various working fluids, operating temperature and heat flux are investigated experimentally. From these experimental results, a mathematical model is developed. In the present model, boiling of liquid pool in the evaporator is considered for the heat transfer mechanism of the thermosyphons. And also the effects of the number of grooves, the various working fluids, the operating temperature and the heat flux are brought into consideration. A good agreement between the boiling heat transfer coefficient of the thermosyphon estimated from experimental results and the predictions from the present mathematical correlation is obtained. The experimental results show that the number of grooves, the amount of the working fluid and the various working fluids are very important factors for the operation of thermosyphons. Also, the thermosyphons with internal helical grooves can be used to achieve some inexpensive and compact heat exchangers in low temperature.

비뉴튼유체의 협착관내 유동 특성에 관한 연구 (A Study on the Flow Characteristics in the Stenosed Tube of the Non-Newtonian Fluids)

  • 박상언;윤재복;유상신
    • 설비공학논문집
    • /
    • 제4권4호
    • /
    • pp.342-350
    • /
    • 1992
  • An experimental investigation of the stenosis effects on the pressure drop and flow change in the internal flow is presented. Stainless steel tubes of small diameter(3.175mm, 3.4mm) are used for the test section of the flow loop. Percent contraction ranges from 35% to 83% and the stenosis length ratio (L/d) is varied from 2.8 to 8. Water and aqueous glycerol solutions are used for Newtonian fluids and polymer solutions of Separan AP-273 (500 wppm, 1000 wppm) for non-Newtonian fluids. Pressure loss coefficients of non-Newtonian fluids decrease just as those of Newtonian fluids. The loss coefficients of Newtonian and non-Newtonian fluids increase as the percent contraction increases and the loss coefficients of non-Newtonian fluids are larger than those of Newtonian fluids for the same stenosed tube. The loss coefficient increases as the stenosis length ratio increases.

  • PDF

성층화된 유체 내에서 내부파와 표면파의 파형 변화 실험을 위한 수치적 연구 (Numerical Study for Experiment on Wave Pattern of Internal Wave and Surface Wave in Stratified Fluid)

  • 이주한;김관우;백광준;구원철;김영규
    • 한국해양공학회지
    • /
    • 제33권3호
    • /
    • pp.236-244
    • /
    • 2019
  • Internal waves occur at the interface between two layers caused by a seawater density difference. The internal waves generated by a body moving in a two-layer fluid are also related to the generation of surface waves because of their interaction. In these complex flow phenomena, the experimental measurements and experimental set-up for the wave patterns of the internal waves and surface waves are very difficult to perform in a laboratory. Therefore, studies have mainly been carried out using numerical analysis. However, model tests are needed to evaluate the accuracy of numerical models. In this study, the various experimental conditions were evaluated using CFD simulations before experiments to measure the wave patterns of the internal waves and surface waves in a stratified two-layer fluid. The numerical simulation conditions included variations in the densities of the fluids, depth of the two-layer fluid, and moving speed of the underwater body.

내부고립파의 생성과 전파에 관한 수치해석 (Numerical Analysis of Generation and Propagation of Interfacial Soliton)

  • 윤동민;윤범상
    • 대한조선학회논문집
    • /
    • 제47권3호
    • /
    • pp.359-368
    • /
    • 2010
  • This paper describes the generation and propagation of internal solitary wave in a two-layer fluid system by numerical analysis. Characteristics of interfacial soliton such as wave type, wave height, wave celerity are investigated numerically with respect to an extent of initial disturbance, fluid thicknesses of the two fluids and etc. The difference between the internal wave propagation on sloping beach and flat bottom was also examined. Laboratory experiments were conducted in the wave flume and compared with the results of numerical computation for verification.

이산화탄소를 이용한 온수급탕용 초월임계사이클의 성능에 대한 실험적 연구 (Experimental Studies on the Performance of a Transcritical Cycle for Hot Water Heating Using Carbon Dioxide)

  • 김성구;김민수
    • 설비공학논문집
    • /
    • 제15권6호
    • /
    • pp.461-470
    • /
    • 2003
  • The purpose of this study is to investigate the performance of a transcritical cycle for hot water heating using $CO_2$ as a working fluid. Some of the main parameters that affect the practical performance of the $CO_2$ system are discussed; the performance on the variation of refrigerant charge, changes in flow conditions of secondary fluids, and that with or without internal heat exchanger, The experimental results show that the optimum charge is approximately the same for various mass flow rates of the secondary fluid at gas cooler. The experimental results on the effect of secondary fluids are in general agreement with the experimental results of transcritical cycle in the open literature and show similar trend for conventional subcritical vapor compression cycles. The heat exchanger effectiveness increases with an increase of the heat exchange area of the internal heat exchanger regardless of the mass flow rate at the gas cooler.

밀도가 상이한 두 유체층에서 부유체 동유체력 특성의 수치적 해석 (Numerical Analysis of Hydrodynamic Forces on a Floating Body in Two-layer Fluids)

  • 김미근;구원철
    • 대한조선학회논문집
    • /
    • 제47권3호
    • /
    • pp.369-376
    • /
    • 2010
  • In this study, a radiation and a diffraction problems of a floating body in two-layer fluids were solved by the Numerical Wave Tank(NWT) technique in the frequency domain. In two-layer fluids, two different wave modes exist and the hydrodynamic coefficients can be obtained separately for each mode. The two-domain Boundary Element Method(BEM) in the potential fluid using the whole-domain matrix scheme was used to investigate the characteristics of wave forces, added mass and damping coefficients. The effects of the ratio of density and water depth in the lower domain were also evaluated and compared with given references.