• Title/Summary/Keyword: Internal displacement

Search Result 538, Processing Time 0.031 seconds

Development of MLS Difference Method for Material Nonlinear Problem (MLS차분법을 이용한 재료비선형 문제 해석)

  • Yoon, Young-Cheol
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.3
    • /
    • pp.237-244
    • /
    • 2016
  • This paper presents a nonlinear Moving Least Squares(MLS) difference method for material nonlinearity problem. The MLS difference method, which employs strong formulation involving the fast derivative approximation, discretizes governing partial differential equation based on a node model. However, the conventional MLS difference method cannot explicitly handle constitutive equation since it solves solid mechanics problems by using the Navier's equation that unifies unknowns into one variable, displacement. In this study, a double derivative approximation is devised to treat the constitutive equation of inelastic material in the framework of strong formulation; in fact, it manipulates the first order derivative approximation two times. The equilibrium equation described by the divergence of stress tensor is directly discretized and is linearized by the Newton method; as a result, an iterative procedure is developed to find convergent solution. Stresses and internal variables are calculated and updated by the return mapping algorithm. Effectiveness and stability of the iterative procedure is improved by using algorithmic tangent modulus. The consistency of the double derivative approximation was shown by the reproducing property test. Also, accuracy and stability of the procedure were verified by analyzing inelastic beam under incremental tensile loading.

Studies on the Steady State and Dynamic Characteristics of a Carbon Dioxide Air-Conditioning System for Vehicles (자동차용 이산화탄소 냉방 시스템의 정상상태 및 동적 특성에 관한 연구)

  • Park, Min-Su;Kim, Sung-Chul;Kim, Dal-Won;Kim, Min-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.6 s.261
    • /
    • pp.531-538
    • /
    • 2007
  • In this study, an air conditioning system using carbon dioxide as a refrigerant was developed for automotive cabin cooling. Experiments have been carried out to examine the steady state and dynamic characteristics of this system. The system consists of a compressor, a gas cooler, an evaporator, an expansion device, an internal heat exchanger and an accumulator. The compressor is a variable displacement type, driven by the electric motor, and the gas cooler and the evaporator are aluminum extruded heat exchangers of micro channel type. The $CO_2-refrigerant$ charge, the compressor speed, the air inlet temperature of the gas cooler, the air inlet temperature and the air flow rate of the evaporator and the cooling load are varied and the performance of the system is experimentally investigated. As the compressor speed increased, cooling capacity increased, but the coefficient of performance was deteriorated. As the cabin air temperature or the air flow rate to the cabin was set high, both the cooling capacity and the COP increased. In the cool down experiment with 1.0 or 2.0 kW of heat load, the dynamic characteristics of the air-conditioning system were investigated. For a given capacity of compressor, cool down speed was monitored, and the temperature change was acceptable fur low heat load condition.

Parametric Analysis on Ultimate Behavior of Cylindrical GFRP Septic Tank (원통형 GFRP 개인하수 처리시설의 극한거동에 대한 매개변수해석)

  • Kim, Sung Bo;Cho, Kwang Je
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1337-1347
    • /
    • 2013
  • The parametric analysis on ultimate behavior of buried cylindrical GFRP(Glass Fiber Reinforced Polymer) septic tank was presented. Two kinds of F.E. analysis model(soil-spring model and 3D full model) was constructed. The ultimate behavior of septic tank was investigated according to the size of stiffened steel ring and properties of underground soil. Ramberg-Osgood model and Druker-Prager model were used for material nonlinear characteristics of GFRP septic tank and soil, respectively. The diameter and thickness of stiffened steel ring inside septic tank, elastic modulus and internal friction angle of soil were selected for parametric variables. The ultimate behavior of septic tank, load-displacement, axial and hoop strain, were calculated and investigated.

Comparison of the dynamic responses of $G\ddot{u}lburnu$ Highway Bridge using single and triple concave friction pendulums

  • Yurdakul, Muhammet;Ates, Sevket;Altunisik, Ahmet Can
    • Earthquakes and Structures
    • /
    • v.7 no.4
    • /
    • pp.511-525
    • /
    • 2014
  • The main object of this study is to determine and compare the structural behavior of base isolated long span highway bridge, $G\ddot{u}lburnu$ Highway Bridge, using single concave friction pendulum (SCFP) and triple concave friction pendulum (TCFP). The bridge is seismically isolated in the design phase to increase the main period and reduce the horizontal forces with moments using SCFP bearings. In the content of the paper, firstly three dimensional finite element model (FEM) of the bridge is constituted using project drawings by SAP2000 software. The dynamic characteristics such as natural frequencies and periods, and the structural response such as displacements, axial forces, shear forces and torsional moments are attained from the modal and dynamic analyses. After, FEM of the bridge is updated using TCFP and the analyses are performed. At the end of the study, the dynamic characteristics and internal forces are compared with each other to extract the TCFP effect. To emphasize the base isolation effect, the non-isolated structural analysis results are added to graphics. The predominant frequencies of bridge non-isolated, isolated with SCFP and isolated with TCFP conditions decreased from 0.849Hz to 0.497Hz and 0.338Hz, respectively. The maximum vertical displacements are obtained as 57cm, 54cm and 44cm for non-isolated, isolated with SCFP and isolated with TCFP conditions, respectively. The maximum vertical displacement reduction between isolated with TCFP bearing and isolated with SCFP bearing bridge is %23. Maximum axial forces are obtained as 60619kN, 18728kN and 7382kN, maximum shear forces are obtained as 23408kN, 17913kN and 16249kN and maximum torsional moments are obtained as 24020kNm, 7619kNm and 3840kNm for non-isolated, isolated with SCFP and isolated with TCFP conditions, respectively.

The ground reaction curve of underwater tunnels considering seepage forces (침투력을 고려한 터널의 지반반응곡선)

  • Shin, Young-Jin;Kim, Byoung-Min;Shin, Jong-Ho;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.2
    • /
    • pp.183-204
    • /
    • 2007
  • When a tunnel is excavated below groundwater table, the groundwater flows into the excavated wall of tunnel and seepage forces are acting on the tunnel wall. Such seepage forces significantly affect the ground reaction curve which is defined as the relationship between internal pressure and radial displacement of tunnel wall. In this paper, seepage forces arising from the ground water flow into a tunnel were estimated quantitatively. Magnitude of seepage forces was decided based on hydraulic gradient distribution around tunnel. Using these results, the theoretical solutions of ground reaction curve with consideration of seepage forces under steady-state flow were derived. A no-support condition and a supported condition with grouted bolts and shotcrete lining were considered, respectively. The theoretical solution derived in this study was validated by numerical analysis. The changes in the ground reaction curve according to various cover depths and groundwater table conditions were investigated. Based on the results, the application limit of theoretical solutions was suggested.

  • PDF

MRI FINDINGS FOR DIAGNOSIS OF THE TEMPOROMANDIBULAR JOINT DISC PERFORATION (MRI를 이용한 악관절 원판 또는 그 주위조직의 천공에 대한 진단)

  • Kim, Hyung-Gon;Kim, Il-Soo;Park, Kwang-Ho;Huh, Jong-Ki;Yoon, Hyun-Joong;Cho, Nariya
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.26 no.2
    • /
    • pp.191-196
    • /
    • 2000
  • Purpose This study is to report presurgical magnetic resonance imaging(MRI) findings of the temporomandibular joint which had perforation in the disc or its surrounding tissues and to improve its diagnostic rate using MRI. Patients and Methods The sample consisted of patients who visited the TMJ clinic at Yongdong Severance Hospital, Yonsei University, during the years, 1992 and 1997. They were diagnosed as TMJ internal derangement and received surgical treatment. We divided them into two groups. The first group comprised of 85 joints with perforated disc or its surrounding tissues and which were confirmed surgically. The second group of 62 joints which only had disc displacement without perforation, hyperemia or adhesion served as control. Results The preoperative diagnostic sensitivity of TMJ perforation using MRI was 74.1%. The MRI findings for diagnosis of the TMJ perforation were degenerative change of the condyle head or the articular fossa, bone to bone contact between the condyle head and the articular eminence or the articular fossa, bony spurring or osteophytosis of the condyle head, flattening of articular surface of the condyle head or the articular eminence, discontinuity of the disc and the arthrographic effect due to joint effusion. Conclusion The preoperative diagnostic sensitivity of TMJ perforation using MRI in this study was 74.1% which was lower than the diagnostic rate using the arthrogram. Further investigations are needed to improve the diagnostic accuracy of TMJ perforation using MRI.

  • PDF

Surgical Treatment of the Fifth Metatarsal Base Fracture Using Multiple Kirschner Wires (다발성 Kirschner 강선을 이용한 제 5중족골 기저부 골절의 수술적 치료)

  • Kim, Jihyeung;Kim, Jang Woo;Lee, Jeong Ik;Kim, Sang Kil;Rhee, Seung Hwan
    • Journal of Korean Foot and Ankle Society
    • /
    • v.18 no.1
    • /
    • pp.24-28
    • /
    • 2014
  • Purpose: The purpose of this study is to evaluate the clinical and radiographic results of internal fixation using multiple Kirschner wires (K-wires) for the fifth metatarsal base fracture. Materials and Methods: We retrospectively reviewed 14 patients with a displaced fifth metatarsal base fracture. We measured the distance of fracture displacement on the foot oblique radiograph pre- and post-operatively. We evaluated the clinical results using the visual analog pain scale at six weeks and three months postoperatively and the American Orthopaedic Foot and Ankle Society (AOFAS) mid-foot score at six months postoperatively. Results: In our series, 10 cases were zone I fracture and four cases were zone II fracture. We achieved anatomical reduction and bony union in all of our cases. The average time to bone union was 43 days. The degree of pain around the fifth metatarsal base was significantly decreased after surgery. The average AOFAS score was 95 at six months postoperatively. Conclusion: Multiple K-wire fixation is a relatively simple fixation method for displaced fifth metatarsal base fractures. If we place a K-wire into the medial cortex of the fifth metatarsal, we could prevent proximal migration of the K-wire.

Development of a Non-invasive Ultrasonic Measurement System for tissue elasticity (비침습적 초음파 조직 탄성도 측정 시스템 개발)

  • Lee, G.J.;Choi, W.H.;Yu, J.W.;Seo, J.B.;Choi, S.H.;Shin, T.M.
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.6
    • /
    • pp.469-475
    • /
    • 2009
  • Diseases caused by indurate tissues of the internal organs are liver cirrhosis and abdominal sclerosis. The cause of chronic gastro-intestinal disease is a digestive system disorder and a defecation disorder. They impede peristaltic movement and digestive system with the symptom that indurate tissues. The purpose of the present study was to determine the disease grade quantitatively by measuring an indurated standard of tissues and organs. For the measurement of elasticity, we designed the system that measure the displacement of the substance and approved pressure using ultrasound transducer. For verification of developed system, we compared elasticity as results of experiment between the developed system and public elasticity measurement machine at individual plastic phantoms made by plastic hardener and softener. Elasticity of the plastic phantoms is averagely 0.007MPa lower measured by developed system than Micro-indenter, and less than 10% errors. Comparing with economical value and accuracy between developed system and Micro-indenter, the system is significant of measurement for tissue elasticity. Thus, it is possible to measure a elasticity at human tissue and organ. A chronic gastro-disease as well as grade could be decided objective validity using this system.

An Anterosuperior Deltoid Splitting Approach for Plate Fixation of Proximal Humeral Fractures

  • Shin, Dong-Ju;Byun, Young-Soo;Cho, Young-Ho;Park, Ki-Hong;Yoo, Hyun-Seong
    • Clinics in Shoulder and Elbow
    • /
    • v.18 no.1
    • /
    • pp.2-7
    • /
    • 2015
  • Background: The purpose of this study was to evaluate the usefulness and safety of the anterosuperior deltoid splitting approach for fixation of displaced proximal humeral fractures by analyzing the surgical outcomes. Methods: Twenty-three patients who could be followed-up for at least 8 months after the treatment of displaced proximal humeral fractures through the anterosuperior deltoid splitting approach were enrolled. We evaluated the reduction of the fractures and surgery-related complications at the last follow-up using X-ray results and clinical outcomes comprising the University of California at Los Angeles (UCLA) scoring system and the Korean Shoulder Society (KSS) score. Results: At the last follow-up of patients treated using the anterosuperior deltoid splitting approach for internal fixation of proximal humeral fractures, we found 22 cases (95.6%) of bone union, a mean UCLA score of 28.3 (range, 15 to 34) and a mean KSS score of 82.1 (range, 67 to 95). Various surgery-related complications were noted; a case of varus malunion after fracture displacement, a case of nonunion, a case of delayed union, two cases of impingement, and a case of partial axillary nerve injury, which recovered completely through the follow-up. Conclusions: Plate fixation using the anterosuperior deltoid splitting approach could be another reliable option for treating displaced proximal humeral fractures.

Kinematic Analysis of a Scoop Motion in Elite Male Hockey Players (남자 우수하키 선수들의 스쿱 동작에 관한 운동학적 분석)

  • Lim, Jung-Woo
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.3
    • /
    • pp.481-488
    • /
    • 2009
  • The purpose of this study was to investigate the hokey scoop motion of elite male hockey players. To accomplish the goal of this study, eight male hockey players participated and were divided into two groups (superior group Vs. inferior group). To find differences between groups, a three-dimensional motion analysis was performed with seven infrared cameras (SF: 200Hz). After analyzed their scoop motion, followings were found. 1) The non-significant(p>.05) increase in anterior CG displacement and velocities were found in superior group compare with inferior group) 2) There were no significance found in anterior-posterior stick velocities between groups. However, significant (p<.05) increase in vertical stick velocities were found in superior group than inferior group indicating the superior group has more skilled in scooping. 3) The significant(p<.05) increase in adductional and internal rotational stick released velocities were found in superior group than inferior group.