• Title/Summary/Keyword: Internal connection length

Search Result 32, Processing Time 0.027 seconds

Influence of internal connection length on screw loosening in internal connection implants (내측 연결 임플란트에서 지대주 내부길이가 나사 풀림에 미치는 영향)

  • Kim, Ji-Sun;Park, Young-Bum;Choi, Hynmin;Kim, Sungtae;Kim, Hyeon Cheol;Kim, Sun Jai;Moon, Hong-Seok;Lee, Jae-Hoon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.55 no.3
    • /
    • pp.251-257
    • /
    • 2017
  • Purpose: The purpose of this study was to evaluate whether the internal abutment length affected screw stability in an internal connection implant. Materials and methods: Twenty long internal connection implants (Replus system, $4.7{\times}11.5mm$) were selected for this investigation. Abutments were assigned to four groups depending on the length of the internal connection (abutments with internal lengths of 1, 2, 3, and 4 mm, respectively). Each implant fixture specimen was embedded in resin medium and connected to an abutment with an abutment screw. A load of 100 N, applied at an angle of $30^{\circ}$ to the long axis of the implant, was repeated for $1.0{\times}10^6$ cycles. Reverse torque values (RTV) were recorded before and after loading, and the change in RTV was calculated. Data were analyzed with the Kruskal-Wallis test. Results: The change in RTV was not significantly different among the groups (P>.05). Screw loosening and fractures were not observed in any groups, and joint stability was maintained. Conclusion: The internal length of the abutment may not significantly affect the degree of screw loosening.

Splice Performance Evaluation of Fastening Coupler According to the Slope Length of Internal Fasteners (조임쇠 경사길이에 따른 체결식 커플러의 이음성능 평가)

  • Jung, Hyun-Suk;Choi, Chang-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.4
    • /
    • pp.11-19
    • /
    • 2022
  • In this study, in order to improve the splice performance of mechanical couplers, two new mechanical couplers with different connection modes were developed with rebar(SD400). The stress analysis of mechanical couplers with two different connection modes was carried out. Uniaxial tensile tests were carried out with type of steel, connection mode and the slope length of internal fastener as variables to analyze the influence on the maximum tensile strength. Building upon this previous work, the specimens that met the code in uniaxial tensile test were fabricated and static loading test and cyclic loading test were performed on the basis of Korean code(KS D 0249). The results of this research are as follows; (1) The tensile strength of steel and the slope length of internal fasteners have a certain influence on the maximum tensile strength. (2) The connection mode has some influence on the stiffness, slip and stiffness reduction rate of the connecting rebars. The results verify the feasibility of the proposed enhanced mechanical coupler in the field.

Influence of abutment materials on the implant-abutment joint stability in internal conical connection type implant systems

  • Jo, Jae-Young;Yang, Dong-Seok;Huh, Jung-Bo;Heo, Jae-Chan;Yun, Mi-Jung;Jeong, Chang-Mo
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.6
    • /
    • pp.491-497
    • /
    • 2014
  • PURPOSE. This study evaluated the influence of abutment materials on the stability of the implant-abutment joint in internal conical connection type implant systems. MATERIALS AND METHODS. Internal conical connection type implants, cement-retained abutments, and tungsten carbide-coated abutment screws were used. The abutments were fabricated with commercially pure grade 3 titanium (group T3), commercially pure grade 4 titanium (group T4), or Ti-6Al-4V (group TA) (n=5, each). In order to assess the amount of settlement after abutment fixation, a 30-Ncm tightening torque was applied, then the change in length before and after tightening the abutment screw was measured, and the preload exerted was recorded. The compressive bending strength was measured under the ISO14801 conditions. In order to determine whether there were significant changes in settlement, preload, and compressive bending strength before and after abutment fixation depending on abutment materials, one-way ANOVA and Tukey's HSD post-hoc test was performed. RESULTS. Group TA exhibited the smallest mean change in the combined length of the implant and abutment before and after fixation, and no difference was observed between groups T3 and T4 (P>.05). Group TA exhibited the highest preload and compressive bending strength values, followed by T4, then T3 (P<.001). CONCLUSION. The abutment material can influence the stability of the interface in internal conical connection type implant systems. The strength of the abutment material was inversely correlated with settlement, and positively correlated with compressive bending strength. Preload was inversely proportional to the frictional coefficient of the abutment material.

The non-linear FEM analysis of different connection lengths of internal connection abutment (내측 연결형 임플란트 지대주의 체결부 길이 변화에 따른 비선형 유한요소법적 응력분석)

  • Lee, Yong-Sang;Kang, Kyoung-Tak;Han, Dong-Hoo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.54 no.2
    • /
    • pp.110-119
    • /
    • 2016
  • Purpose: This study is aimed to assess changes of stress distribution dependent on different connection lengths and placement of the fixture top relative to the ridge crest. Materials and methods: The internal-conical connection implant which has a hexagonal anti-rotation index was used for FEM analysis on stress distribution in accordance with connection length of fixture-abutment. Different connection lengths of 2.5 mm, 3.5 mm, and 4.5 mm were designed respectively with the top of the fixture flush with residual ridge crest level, or 2 mm above. Therefore, a total of 6 models were made for the FEM analysis. The load was 170 N and 30-degree tilted. Results: In all cases, the maximum von Mises stress was located adjacent to the top portion of the fixture and ridge crest in the bone. The longer the connection length was, the lower the maximum von Mises stress was in the fixture, abutment, screw and bone. The reduction rate of the maximum von Mises stress depending on increased connection length was greater in the case of the fixture top at 2 mm above the ridge crest versus flush with the ridge crest. Conclusion: It was found that the longer the connection length, the lower the maximum von Mises stress appears. Furthermore, it will help prevent mechanical or biological complications of implants.

Abutment Sinking and Fitness of Conical Internal Connection Implant System according to Loading Condition (하중조건에 따른 원추형 내측연결 임플랜트 시스템에서 지대주 침하 및 적합에 관한 연구)

  • Lee, Hal-La;Kim, Hee-Jung;Son, Mee-Kyoung;Chung, Chae-Heon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.24 no.1
    • /
    • pp.77-89
    • /
    • 2008
  • The purpose of this study was to evaluate internal conical abutment sinking and fitness according to the loading condition. In this study, Alloden implant fixture and two abutment(conventional, FDI) systems were used. Each abutment was applied 1 time of finger force, 3 times of malleting force, 5 times of 20kg and extra several times to the fixture until the amount of abutment singking showed no change. Then, the length of abutment to fixture which was binding lightly with no pressure state was measured by Vernier caliper. After loading application, the length was remeasured and the amount of sinking was calculated. The implant was buried in unsaturated polyester (Epovia, Cray Valley Inc. Korea) for making a comparison between the change of length and fitness of abutment-fixture connection part. Then All samples were cross-sectioned with high speed precision cut-off(accutom-5, Struers, Denmark). Finally, The result were observed and analyzed using FE-SEM (field emission scanning electron microscopy).

Long-term effect of implant-abutment connection type on marginal bone loss and survival of dental implants

  • Young-Min Kim;Jong-Bin Lee;Heung-Sik Um;Beom-Seok Chang;Jae-Kwan Lee
    • Journal of Periodontal and Implant Science
    • /
    • v.52 no.6
    • /
    • pp.496-508
    • /
    • 2022
  • Purpose: This study aimed to compare the long-term survival rate and peri-implant marginal bone loss between different types of dental implant-abutment connections. Methods: Implants with external or internal abutment connections, which were fitted at Gangneung-Wonju National University Dental Hospital from November 2011 to December 2015 and followed up for >5 years, were retrospectively investigated. Cumulative survival rates were evaluated for >5 years, and peri-implant marginal bone loss was evaluated at 1- and 5-year follow-up examinations after functional loading. Results: The 8-year cumulative survival rates were 93.3% and 90.7% in the external and internal connection types, respectively (P=0.353). The mean values of marginal bone loss were 1.23 mm (external) and 0.72 mm (internal) (P<0.001) after 1 year of loading, and 1.20 mm and 1.00 mm for external and internal abutment connections, respectively (P=0.137) after 5 years. Implant length (longer, P=0.018), smoking status (heavy, P=0.001), and prosthetic type (bridge, P=0.004) were associated with significantly greater marginal bone loss, and the use of screw-cement-retained prosthesis was significantly associated (P=0.027) with less marginal bone loss. Conclusions: There was no significant difference in the cumulative survival rate between implants with external and internal abutment connections. After 1 year of loading, marginal bone loss was greater around the implants with an external abutment connection. However, no significant difference between the external and internal connection groups was found after 5 years. Both types of abutment connections are viable treatment options for the reconstruction of partially edentulous ridges.

Sinking and fit of abutment of locking taper implant system

  • Moon, Seung-Jin;Kim, Hee-Jung;Son, Mee-Kyoung;Chung, Chae-Heon
    • The Journal of Advanced Prosthodontics
    • /
    • v.1 no.2
    • /
    • pp.97-101
    • /
    • 2009
  • STATEMENT OF PROBLEM. Unlike screw-retention type, fixture-abutment retention in Locking taper connection depends on frictional force so it has possibility of abutment to sink. PURPOSE. In this study, Bicon$^{(R)}$ Implant System, one of the conical internal connection implant system, was used with applying loading force to the abutments connected to the fixture. Then the amount of sinking was measured. MATERIAL AND METHODS. 10 Bicon$^{(R)}$ implant fixtures were used. First, the abutment was connected to the fixture with finger force. Then it was tapped with a mallet for 3 times and loads of 20 kg corresponding to masticatory force using loading application instrument were applied successively. The abutment state, slightly connected to the fixture without pressure was considered as a reference length, and every new abutment length was measured after each load's step was added. The amount of abutment sinking (mm) was gained by subtracting the length of abutment-fixture under each loading condition from reference length. RESULTS. It was evident, that the amount of abutment sinking in Bicon$^{(R)}$ Implant System increased as loads were added. When loads of 20 kg were applied more than 5 - 7 times, sinking stopped at $0.45{\pm}0.09\;mm$. CONCLUSION. Even though locking taper connection type implant shows good adaption to occlusal force, it has potential for abutment sinking as loads are given. When locking taper connection type implant is used, satisfactory loads are recommended for precise abutment location.

Study on the progressive collapse resistance of CP-FBSP connections in L-CFST frame structure

  • Xiong, Qingqing;Wu, Wenbo;Zhang, Wang;Chen, Zhihua;Liu, Hongbo;Su, Tiancheng
    • Steel and Composite Structures
    • /
    • v.44 no.3
    • /
    • pp.437-450
    • /
    • 2022
  • When the vertical load-bearing members in high-rise structures fail locally, the beam-column joints play an important role in the redistribution of the internal forces. In this paper, a static laboratory test of three full-scale flush flange beam-reinforced connections with side and cover plates (CP-FBSP connection) with double half-span steel beams and single L-shaped columns composed of concrete-filled steel tubes (L-CFST columns) was conducted. The influence of the side plate width and cover plate thickness on the progressive collapse resistance of the substructure was thoroughly analyzed. The failure mode, vertical force-displacement curves, strain variation, reaction force of the pin support and development of internal force in the section with the assumed plastic hinge were discussed. Then, through the verified finite element model, the corresponding analyses of the thickness and length of the side plates, the connecting length between the steel beam flange and cover plate, and the vertical-force eccentricity were carried out. The results show that the failure of all the specimens occurred through the cracking of the beam flange or the cover plate, and the beam chord rotations measured by the test were all greater than 0.085 rad. Increasing the length, thickness and width of the side plates slightly reduced the progressive collapse resistance of the substructures. The vertical-force eccentricity along the beam length reduced the progressive collapse resistance of the substructure. An increase in the connecting length between the beam flange and cover plate can significantly improve the progressive collapse resistance of substructures.

Retrospective study on marginal bone resorption around immediately loaded implants (즉시 하중 임플란트에서 변연골 흡수량에 관한 후향적 연구)

  • Lee, Sung-Hoon;Jung, Ji-Hye;Lee, Jin-Han;Cho, Hye-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.56 no.2
    • /
    • pp.114-119
    • /
    • 2018
  • Purpose: Patients who treated implant immediate loading within a week after implant placement at Wonkwang University Dental Hospital Implant Center were evaluated marginal bone resorption. These retrospective analyses are intended to reinforce the clinical evidence for the implant immediate loading. Materials and methods: Medical history and radiographic data were investigated, which were the patients' who treated implant immediate loading and restoration with provisional prostheses between January 2005 and June 2016, at Wonkwang University Dental Hospital Implant Center. Total number of implants was 70, marginal bone resorption was measured according to implant length, diameter and connection type. To measure marginal bone resorption, periapical radiographs were taken when the implants were placed and after 6 month. Statistical analysis was done in Mann-whitney U test and Kruskal-wallis test with SPSS 22.0 software (P<.05). Results: Mean marginal bone resorption around immediately loaded implants according to implant connection type was shown $1.24{\pm}0.72mm$ in internal hexagon connection type and $1.73{\pm}1.27mm$ in external hexagon connection type. There was no statically significant difference in marginal bone resorption with implant length and diameter. Conclusion: Implants with immediated loading in internal hexagon connection type showed less marginal bone resorption significantly than in external hexagon connection type.

Effect of abutment screw length and cyclic loading on removal torque in external and internal hex implants

  • Mohammed, Hnd Hadi;Lee, Jin-Han;Bae, Ji-Myung;Cho, Hye-Won
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.1
    • /
    • pp.62-69
    • /
    • 2016
  • PURPOSE. The purpose of this study was to evaluate the effects of abutment screw length and cyclic loading on the removal torque (RTV) in external hex (EH) and internal hex (IH) implants. MATERIALS AND METHODS. Forty screw-retained single crowns were connected to external and internal hex implants. The prepared titanium abutment screws were classified into 8 groups based on the number of threads (n = 5 per group): EH 12.5, 6.5, 3.5, 2.5 and IH 6.5, 5, 3.5, 2.5 threads. The abutment screws were tightened with 20 Ncm torque twice with 10-minute intervals. After 5 minutes, the initial RTVs of the abutment screws were measured with a digital torque gauge (MGT12). A customized jig was constructed to apply a load along the implant long axis at the central fossa of the maxillary first molar. The post-loading RTVs were measured after 16,000 cycles of mechanical loading with 50 N at a 1-Hz frequency. Statistical analysis included one-way analysis of variance and paired t-tests. RESULTS. The post-loading RTVs were significantly lower than the initial RTVs in the EH 2.5 thread and IH 2.5 thread groups (P<.05). The initial RTVs exhibited no significant differences among the 8 groups, whereas the post-loading RTVs of the EH 6.5 and EH 3.5 thread groups were higher than those of the IH 3.5 thread group (P<.05). CONCLUSION. Within the limitations of this study, the external hex implants with short screw lengths were more advantageous than internal hex implants with short screw lengths in torque maintenance after cyclic loading.