• 제목/요약/키워드: Internal condensation

검색결과 111건 처리시간 0.027초

피동 원자로건물 냉각계통 실험에 관한 수치적 연구 (Numerical Investigation on Experiment for Passive Containment Cooling System)

  • 하희운;서정수
    • 한국안전학회지
    • /
    • 제35권3호
    • /
    • pp.96-104
    • /
    • 2020
  • The numerical simulations were conducted to investigate the thermal-fluid phenomena occurred inside the experimental apparatus during a PCCS, used to remove heat released in accidents from a containment of light water nuclear power plant, operation. Numerical simulations of the flow and heat transfer caused by wall condensation inside the containment simulation vessel (CSV), which equipped with 18 vertical heat exchanger tubes, were conducted using the commercial computational fluid dynamics (CFD) software ANSYS-CFX. Shear stress transport (SST) and the wall condensation model were used for turbulence closure and wall condensation, respectively. The simulation using the actual size of the apparatus. However, rather than simulating the whole experimental apparatus in consideration of the experimental cases, calculation resources, and calculation time, the simulation model was prepared only in CSV. Selective simulation was conducted to verify the effects of non-condensable gas(NC gas) concentration, CSV internal pressure, and wall sub-cooling conditions. First, as a result of the internal flow of CSV, it was observed that downward flow due to condensation occurred surface of the vertical tube and upward flow occurred in the distant place. Natural convection occurred actively around the heat exchanger tube. Due to this rising and falling internal flow, natural circulation occurred actively around the heat exchanger tubes. Next, in order to check the performance of built-in condensation model using according to the non-condensable gas concentration, CSV internal flow and wall sub-cooling, the heat flux values were compared with the experimental results. On average, the results were underestimated with and error of about 25%. In addition, the influence of CSV internal pressure and wall sub-cooling was small, but when the condensate was highly generated due to the low non-condensable gas concentration, the error was large compared to the experimental values. This is considered to be due to the nature of the condensation model of the CFX code. However, in spite of the limitations of CFD, it is valid to use the built-in condensation model of CFD for PCCS performance prediction from a conservative perspective.

미세노즐을 통해 수직분사된 수증기의 직접접촉응축 영역도 (The regime map for the direct contact condensation of steam vertically injected through a mini nozzle)

  • 이수관;배성효;김무환
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1075-1079
    • /
    • 2004
  • Steam was vertically discharged into water through mini nozzles of various diameters (d=0.115, 0.520, 1.55mm). The condensation was observed and categorized into several types of condensation regimes for each of the nozzles. Compared with the regimes in the previous researches, the regimes of 'internal necking with attached bubble' and 'internal chug with detached bubble' were newly observed. Depending on a nozzle, some regimes expanded, shrank, or moved in the regime map. For the nozzle of 1.55mm, the regime map was similar to Chan and Lee (1982) except that the regime of 'internal chug' was not observed. For the nozzle of 0.115mm, the regime of 'internal chug' appeared even at high pool temperature.

  • PDF

외기에 면한 초고층 아파트 천정 내부결로 예측 (Forecast on Internal Condensation at Ceiling of Super-high Apartment Building Faced with Open Air)

  • 안재봉;송영웅;최윤기
    • 한국건설관리학회:학술대회논문집
    • /
    • 한국건설관리학회 2003년도 학술대회지
    • /
    • pp.626-629
    • /
    • 2003
  • 본 연구는 외기에 면한 초고층 아파트 최상층부의 발코니 천장내부에 있는 H-Beam(내화피복+단열재로 구성)과 Parepet 부위 내부결로 발생가능성에 대한 예측을 해 봄으로써 해당공간 거주자의 쾌적한 환경 만족 및 불안을 해소 하는데 그 목적이 있다. 외주부를 성하고 있는 Curtain wall, Stone panel 또는 슬래브 바닥하부 등의 열적 취약공간에 대해 2차원 정상상태(온도평형) 열전도해석 Program을 이용, 온도예측과 온도분포해적을 통해 해당부위의 습기압분포에 따른 내부결로 예측을 실시하였다.

  • PDF

Influence of the Inclination Angle and Liquid Charge Ratio on the Condensation in Closed Two-Phase Thermosyphons with Axial Internal Low-Fins

  • Cho, Dong-Hyun;Han, Kyu-il
    • Journal of Mechanical Science and Technology
    • /
    • 제17권3호
    • /
    • pp.422-428
    • /
    • 2003
  • This study concerns the performance of the heat transfer of the thermosyphons having 60, 70, 80. 90 axial internal low-fins in which boiling and condensation occurr. Water, HCFC-141b and CFC-11 have been used as the working fluids. The operating temperature, the liquid charge ratio and the inclination angle of thermosyphons have been used as the experimental parameters. The heat flux and heat transfer coefficient at the condenser are estimated from experimental results. The experimental results have been assessed and compared with existing theories. As a result of the experimental investigation, it was found that the maximum heat flow rate in the thermosyphons is dependent upon the liquid charge ratio and inclination angle. A relatively high rate of heat transfer has been achieved by the thermosyphon with axial internal low-fins. The inclination of a thermosyphon has a notable influence on the condensation. In addition, the overall heat transfer coefficients and the characteristics at the operating temperature are obtained for the practical applications.

외기에 면한 초고층 아파트 발코니 천정 내부결로 예측 (Forecast on Internal Condensation at Balcony Ceiling of Super-high Apartment Building Faced with Open Air)

  • 최윤기;안재봉
    • 한국건설관리학회논문집
    • /
    • 제4권4호
    • /
    • pp.155-163
    • /
    • 2003
  • 최근 들어 주거공간의 기능만족과 효율성 확보를 위해 외기측에 면한 발코니 부위를 확장하는 사례가 늘어나고 있으며 특히, 최상층에 위치한 확장형 주거공간의 경우 외벽에 설치된 AL Curtain wall상부 외벽복합 Panel 이 완전 기밀하지 않음으로 인해 천정 상부측으로 낮은 외기온의 이동에 의한 실온과의 온도차에 의해 내부결로의 발생 가능성을 전혀 배제할 수는 없는 상황이다. 본 연구는 외기에 면한 초고층 아파트 최상층부의 발코니 천장내부에 있는 H-Beam(내화피복+단열재 구성)파 Parapet부위 내부결로 발생가능성에 대한 예측을 해 봄으로써 해당 공간거주자의 쾌적한 환경 만족 및 불안을 해소하는데 그 목적이 있다. 외주부를 구성하고 있는 Curtain wall Stone panel 또는 슬래브 바닥하부 등의 열적 취약공간에 대해 2차원 정상상태(온도평형) 열전도해석 Program을 이용, 온도예측과 온도분포해석을 통해 해당부위의 수증기압 분포에 따른 내부결로 예측을 실시하였다.

레이저 여기된 기체분자들의 차가운 표면 응고저지 현상 (Cold Wall Condensation Retardation of Laser Excited Gaseous Molecules)

  • Kim Jae-U;Jeong Do-Yeong;Jeff W. Eerkens;William H. Miller
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 2002년도 하계학술발표회
    • /
    • pp.248-249
    • /
    • 2002
  • The gaseous molecular condensation retardation by laser excitation has been known, but with limited success. Condensation inhibition between the gas phase molecules by laser excitation was clearly shown in many experiments.(1)-(2) However, surface condensation inhibition of the excited molecules has been controversial for the last several decades.(3)-(4) In 1994, S. J, Sibener and Y. T. Lee published an experimental evidence of the internal energy dependence of the surface condensation of gaseous $SF_{6}$ and $CCl_4$ molecules. (omitted)

  • PDF

고속 회전축 냉각용 루우프 히트파이프 열교환기의 응축열전달 특성에 관한 연구 (A Study on the Condensation Heat Transfer Characteristics of a Loop Heat Pipe Heat Exchanger for High Speed Rotary Shaft Cooling)

  • 조동현;이종선
    • 한국기계가공학회지
    • /
    • 제16권4호
    • /
    • pp.147-152
    • /
    • 2017
  • In the present study, we used a loop thermosyphon heat exchanger consisting of condensers with internal fins and external plate fins which are 480 mm wide, 68 mm long, and 1,000 mm high. The heat transfer pipes in the heat exchanger were 15 mm in diameter and 1,000 mm in length, and 98 heat transfer pipes were installed in the heat exchanger. According to the experimental results, as the spaces between the internal discontinuous pins decreased, the frequency of pressure drops increased and changes in temperature at the outlet of the condenser were shown to be a little smaller. Therefore, we can see that as the spaces between internal discontinuous pins decreased, the heat transfer performance increased. For the loop heat pipe heat exchanger consisting of a condenser with internal and plate fins, as the temperature of the air flowing into the condenser increased, the condensation heat transfer rate also increased, and as the condenser refrigerant inflow temperature increased, the condensation heat transfer rate increased as well.

근관충전방법에 따른 내흡수 치근의 근관충전 효율성 비교 (COMPARISON OF CANAL FILLING EFFICIENCY ON THE INTERNALLY RESORBED ROOT ACCORDING TO CANAL FILLING TEHNIQUES)

  • 하상윤;신동훈;홍찬의
    • Restorative Dentistry and Endodontics
    • /
    • 제20권2호
    • /
    • pp.789-801
    • /
    • 1995
  • Canals with artificially made internal resorption were filled with 4 techniques(Lateral condensation, Ultrafil, Obtura II, Thermafil) to compare the efficacy of canal filling according to the filling techniques. After canal filling, radiographic examination, dye penetration through the apical portion and percentage of G-P filled area on the internal resorption area were evaluated. To examine the degree of crystal-like structure and the interface between filled G-P and canal wall, SM and SEM images were taken too. The results were as follows : 1. There was no statistically significant difference in apical microleakage among the 4 root canal filling techniques. 2. As a result of radiographic examination, Ultrafil was the best and Obtura II was acceptable but Lateral condensation and Thermafil showed unfavorable canal filling pattern similarly. 3. Ultrafil filled most of artificially made internal resorption area and Obtura II, Lateral condensation, Thermafil in that order filled unfavorably. 4. Degree of crystal like structure was the highest in the group filled with Ultrafil and those of Obtura II and Thermafil were similar and that of gutta percha used in Lateral condensation showed the lowest value. 5. Penetration of gutta percha into the dentinal tubules couldn't be seen in all groups. In the contact surface between the filled G-P and the canal wall, Lateral condensation showed relatively close sealing, Obtura II and Thermafil had irregular contact surface and Ultrafil showed regular filling pattern. 6. Contact surface between the core of Thermafil and the gutta percha showed close relationship without gap formation.

  • PDF

나선코일의 열전달 특성에 관한 연구 (A Study on Heat Transfer Characteristics of Helical Coiled Tube)

  • 박종운;조동현
    • 수산해양교육연구
    • /
    • 제16권2호
    • /
    • pp.257-270
    • /
    • 2004
  • The two-phase closed thermosyphon is a heat transfer device capable of transfer large quantities of heat from a source to a sink by taking advantage of the high heat transfer rates associated with the evaporation and condensation of a working fluid within the device. A study was carried out with the performance of the heat transfer of the thermosyphon having 50, 60, 70, 80, 90 internal micro grooves in which boiling and condensation occur. A plain thermosyphon having the same inner and outer diameter as the grooved thermosyphon is also tested for comparison. Water, methanol and ethanol have been used as the working fluids. The liquid filling as the ratio of working fluid volume to total volume of thermosyphon, the inclination angle, micro grooves and operating temperature have been used as the experimental parameters. The heat flux and the boiling and the condensation heat transfer coefficient and overall heat transfer coefficient at the condenser and evaporator zone are estimated from the experimental results. The experimental results have been assessed and compared with existing correlations. Imura's and Kusuda's correlation for boiling showed in good agreement with experimental results within ${\pm}20$% in plain thermosyphon. The maximum heat transfer rate was obtained when the liquid fill ratio was about 25%. The high heat transfer coefficient was found between 25o and 30o of inclination angle for water and between 20o and 25o for methanol and ethanol. The relatively high rates of heat transfer have been achieved in the thermosyphon with internal micro grooves. The micro grooved thermosyphon having 60 grooves shows the best heat transfer coefficient in both condensation and boiling. The maximum enhancement (i.e. the ratio of the heat transfer coefficients of the micro grooved thermosyphon to plain thermosyphon) is 2.5 for condensation and 2.3 for boiling.