• Title/Summary/Keyword: Internal charge transfer

Search Result 47, Processing Time 0.026 seconds

An Experimental Study on the Effects of ...an Inserted Coil on Flow Patterns pd. Beat Transport Performances for a Horizontal Rotating Heat Pipe

  • Lee, Jin-Sung;Kim, Chul-Ju;Kim, Bong-Hun
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.8 no.1
    • /
    • pp.50-61
    • /
    • 2000
  • The effects of an inserted coil on flow . patterns and heat transfer performance for a horizontal rotating heat pipe have been studied experimentally. Especially, the present study is to see an internally inserted helical coil inside a RHP would lead to the same kind of results as internal fins. Visualization test conducted for an acryl tube, charged water with at a volumetric rate of 20%. When the flow kept pool regime at a low rpm(less than 1,000rpm), the movement of coil forced the water to flow in axial direction. But this pumping effect of coil disappeared, when the pool regime changed to annular one which could be created by increasing rpm. The pumping effects for RHP with an inserted coil resulted in the enhancement in both condensation heat transfer coefficient and heat transport limitation, as obtained in case of using internal fins. But all these effects became negligible in the range of higher rpm(above 1,000-1,200) with the transition of flow regime to annular flow.

  • PDF

Effect of Cathodic Biofilm on the Performance of Air-Cathode Single Chamber Microbial Fuel Cells

  • Ahmed, Jalal;Kim, Sung-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.10
    • /
    • pp.3726-3729
    • /
    • 2011
  • Biofilm formation is inevitable in a bioelectrochemical system in which microorganisms act as a sole biocatalyst. Cathodic biofilm (CBF) works as a double-edged sword in the performance of the air-cathode microbial fuel cells (MFCs). Proton and oxygen crossover through the CBF are limited by the robust structure of extracellular polymeric substances, composition of available constituents and environmental condition from which the biofilm is formed. The MFC performance in terms of power, current and coulombic efficiency is influenced by the nature and origin of CBF. Development of CBF from different ecological environment while keeping the same anode inoculums, contributes additional charge transfer resistance to the total internal resistance, with increase in coulombic efficiency at the expense of power reduction. This study demonstrates that MFC operation conditions need to be optimized on the choice of initial inoculum medium that leads to the biofilm formation on the air cathode.

Analyses of the Output Characteristics and the Internal Impedance of Dye-sensitized Solar Cell According to the Fabrication of the Blocking Layer (Blocking layer 제작에 따른 염료감응형 태양전지 출력특성 및 내부 임피던스 분석)

  • Kim, Jin-Kyoung;Son, Min-Kyu;Kim, Soo-Kyoung;Hong, Na-Yeong;Kim, Byung-Man;Prabarkar, Prabarkar;Kim, Hee-Je
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.1
    • /
    • pp.85-88
    • /
    • 2012
  • DSCs are based on a dye-adsorbed porous $TiO_2$ layer as a photo electrode [1]. Under the illumination, dye molecules are excited and electrons are produced. The injected electrons in the conduction band of $TiO_2$ may recombine with the electrolyte. To obtain high performance DSCs, it is essential to retard the recombination. The charge recombination can be reduced by forming core-shell structure. In this work, we investigated the core-shell structure with $Al_2O_3$ and MgO coating layer on the porous $TiO_2$ layer. We confirmed the photovoltaic properties by I-V characteristics. The current and the efficiency was improved. In addition to, Through decrease in the width of EIS arc, which is the sum of the interfacial charge transfer resistances of both electrodes, we can be indicated that the block effect.

Influence of piston bowl geometry on the in-cylinder flow of HCCI Engine (HCCI 엔진의 실린더 내 유동에 대한 피스톤 보울 형상의 영향)

  • Nam, Seung Man;Lee, Kye Bock
    • Journal of Energy Engineering
    • /
    • v.22 no.4
    • /
    • pp.399-405
    • /
    • 2013
  • The gas motion inside the engine cylinder plays a very important role in determining the thermal efficiency of an internal combustion engine. A precise information of in-cylinder three dimensional complex gas motion is crucial in optimizing engine design. Homogeneous charge compression ignition (HCCI) engine is a combustion concept, which is a hybrid between Otto and Diesel engine. The turbulent diffusion leads to increased rates of momentum, heat and mass transfer. The in-cylinder turbulence flow was found to affect the present HCCI combustion mainly through its influence on the wall heat transfer. This study investigates the effect of piston geometry shape on the turbulent flow characteristics of in-cylinder from the numerical analysis using the LES model and the results obtained can offer guidelines of the combustion geometries for better combustion process and engine performance.

An experimental study on the effects of an inserted coil on flow patterns and heat transport performances for a horizontal rotating heat pipe (수평 회전 히트파이프에서 내부 삽입 코일이 유동 형태 및 열전달 성능에 미치는 영향에 대한 실험 연구)

  • 이진성;김철주;김선주;문석환
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.6
    • /
    • pp.763-772
    • /
    • 1998
  • The effects of an inserted coil on flow patterns and heat transport performance for a horizontal rotating heat pipe have been studied experimentally. Especially, the present study is to see an internally inserted helical coil inside a RHP would lead to the same kind of results as internal fins. Visualization test conducted for an acryl tube, charged water with at a volumetric rate of 20%. When the flow kept pool regime at a low RPM(less than 1,000 RPM), the movement of coil forced the water to flow in axial direction. But this pumping effect of coil disappeared, when the pool regime changed to annular one which could be created by increasing RPM. The pumping effects for RHP with an inserted coil resulted enhancement both in condensation heat transfer coefficient and heat transport limitation, as obtained in case of using internal fins. But all these effects became negligible in the range of higher RPM(above 1,000∼1,200) with the transition of flow regime to annular flow.

  • PDF

Efficiency Factors of Singlet Oxygen Generation from Core-Modified Expanded Porphyric : Tetrathiarubyrin in Ethanol

  • Ha, Jeong Hyeon;Jeong, Guk Yeong;Kim, Min Seon;Lee, Yang Hun;Sin, Gu;Kim, Yong Rok
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.1
    • /
    • pp.63-67
    • /
    • 2001
  • The photophysical properties and the singlet oxygen generation efficiency of tetrathiarubyrin have been investigated to elucidate the possibility of its use as a photodynamic therapy (PDT) photosensitizer by steady-state and time-resolved spectroscopic methods. The observed photophysical properties were affected by various molecular aspects, such as extended ${\pi}conjugation$, structural distortion, and internal heavy atom. The steady-state electronic absorption spectrum was red-shifted due to the extended $\pi-conjugation$, and the spin orbital coupling was enhanced by the structural distortion and the internal heavy atom effect. As a result of the enhanced spin orbital coupling, the triplet quantum yield increased to 0.90 $\pm$ 0.10 and the triplet state lifetime was shortened to 7.0 $\pm$ 1.2 ${\mu}s$. Since the triplet state decays at a relatively faster rate, the efficiency of the oxygen quenching of the triplet state decreases. The singlet oxygen quantum yield was estimated to be 0.52 $\pm$ 0.02, which is somewhat lower than expected. On the other hand, the efficiency of singlet oxygen generation during the oxygen quenching of triplet state, $f{\Delta}^T$, is near unity. Such high efficiency of singlet oxygen generation can be explained by the following two possible factors: The hydrogen bonding of ethanol which impedes the deactivation pathway of the charge transfer complex with oxygen to the ground state, the less probability of the aggregation formation.

Photoluminescence of donor-acceptor fluorene chromophore (Fluorene 발색단의 PL특성)

  • Seo, Byung-Jun;Lee, Tae-Hoon;Son, Se-Mo;Chung, Su-Tae;Kim, Kang-Eun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.1013-1015
    • /
    • 2002
  • 1-(9,9-Di-octyl-fluorenyl)-2-substituted-2-cyanvinylene was synthesized and emission feature in solution are presented. Photoluminescence characteristics of 1-(9,9-Di-octyl-fluorenyJ)-2-substituted-2-cyanvinylene are measured by solvents such as carbon tetrachloride, normal hexane, chloroform, ethylaccetate, acetonitrile, methanol. It is shown that depending in the strength of the donor-acceptor internal charge transfer, and emission spectra are more or less red-shifted.

  • PDF

Treeing Phenomena in the Home-made Solid Organic Insulating Materials (국산유기절연재료의 Treeing현상)

  • 성영권;이헌용;이계호;유기한
    • 전기의세계
    • /
    • v.26 no.2
    • /
    • pp.57-65
    • /
    • 1977
  • In roder to investigate the influence of treeing on electric breakdown of solid organic insulator the initiation and growing mechanism of tree itself, and the correlation between corona discharge and treeing phenomena in solid orgainc insulating materials, several experiments were carried out by means of needle test on polymethyl-methacrylate. The obtained results showed that the existence of voids in specimen had important effects on initiation voltage of trees and, when the direct voltage was applied, the initiation voltage of trees increased by space charge effect. And also the stagnation phenomena due to the transfer of vacancy cluster or polymekr cage in specimen might beconsidered in process of growth of trees, and corona discharge seemed to be the pre-phenomena of treeing because trees were normally initiated by internal discharge in voids.

  • PDF

A Study on the Cooling Performance Improvement of Pouch Battery Thermal Management System for Electric Vehicles (전기자동차 파우치형 배터리 열관리 시스템의 냉각성능 향상에 대한 연구)

  • Shin, Jeong-Hoon;Lee, Jun-Kyoung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.5
    • /
    • pp.715-724
    • /
    • 2022
  • In many electric vehicles, large-capacity pouch-type lithium-ion battery packs are mainly used to increase the mileage on a single charge. The lithium ion battery should be operated within the temperature range of 25℃ to 40℃ because the battery performance can be rapidly deteriorated due to an increase in internal temperature. Battery thermal management system (BTMS) can give the suitable temperature conditions to battery by water cooling method. In this research, the heat transfer characteristics (the battery temperature distributions and the water flow characteristics) were analyzed by CFD method to investigate the thermal performance of the cooling plate with 4-pass water flow structure. Moreover, the effect of the presence of fins between the battery cell was identified. The fins made smooth temperature distributions between the battery cells due to the heat spreading and lower the average battery cells temperature.

Photoelectrochamical characteristics of $WO_3$ on metal substrate for hydrogen production (텅스텐산화물/금속기판의 광전극 특성)

  • Go, GeunHo;Shinde, Pravin S.;Seo, SeonHee;Lee, Dongyoon;Lee, Wonjae
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.99.2-99.2
    • /
    • 2011
  • Transparent conducting oxides (TCOs) supported on glass are widely used as substrates in PEC studies for photovoltaic hydrogen generation applications However, high sheet resistane ($10{\sim}15{\Omega}/cm^2$) and fragileness of glass-supported TCO substrates are the obstacles to produce the large area PEC cells. Such internal sheet resistance is detrimental to efficient collection of photogenerated majority charge carriers at the photoactive material and electrolyte interface. Moreover, these TCO substrates are very expensive and consume about 40~60% cost of the devices. Hence, a low sheet resistance of the substrate is a key point in improving the performance of PEC devices. Metallic substrates coated with a photoactive material would be a good choice for efficient charge collection. Such metal substrates based photanodes are best candidate for large-scale phtoelectrochemical water splitting for hydrogen generation. In this study, we report the enhanced PEC performance of $WO_3$ film on metal(chemical etched, bare) substrate. It is proposed that interface between $WO_3$ and the metal substrate is responsible for efficient charge transfer and demonstrated significant improvement in the photoelectrochmical performance. X-ray diffration and FESEM suduies reveled that $WO_3$ films are monoclinic, porous, polycrystalline with average grain size of ~50nm. Photocurrent of $WO_3$ prepared on metal substrates was measured in 0.5M $H_2SO_4$ electroyte under simulated $100mW/cm^2$ illumination.

  • PDF