• Title/Summary/Keyword: Internal Pipe

Search Result 465, Processing Time 0.029 seconds

Influence of the Francis Turbine location under vortex rope excitation on the Hydraulic System Stability

  • Alligne, S.;Nicolet, C.;Allenbach, P.;Kawkabani, B.;Simond, J.J.;Avellan, F.
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.4
    • /
    • pp.286-294
    • /
    • 2009
  • Hydroelectric power plants are known for their ability to cover variations of the consumption in electrical power networks. In order to follow this changing demand, hydraulic machines are subject to off-design operation. In that case, the swirling flow leaving the runner of a Francis turbine may act under given conditions as an excitation source for the whole hydraulic system. In high load operating conditions, vortex rope behaves as an internal energy source which leads to the self excitation of the system. The aim of this paper is to identify the influence of the full load excitation source location with respect to the eigenmodes shapes on the system stability. For this, a new eigenanalysis tool, based on eigenvalues and eigenvectors computation of the nonlinear set of differential equations in SIMSEN, has been developed. First the modal analysis method and linearization of the set of the nonlinear differential equations are fully described. Then, nonlinear hydro-acoustic models of hydraulic components based on electrical equivalent schemes are presented and linearized. Finally, a hydro-acoustic SIMSEN model of a simple hydraulic power plant, is used to apply the modal analysis and to show the influence of the turbine location on system stability. Through this case study, it brings out that modeling of the pipe viscoelastic damping is decisive to find out stability limits and unstable eigenfrequencies.

Defect Detection of Carbon Steel Pipe Weld Area using Infrared Thermography Camera (적외선 열화상 카메라를 이용한 탄소강관 용접부 결함검출)

  • Kwon, DaeJu;Jung, NaRa;Kim, JaeYeol
    • Tribology and Lubricants
    • /
    • v.30 no.2
    • /
    • pp.124-129
    • /
    • 2014
  • The piping system accounts for a large portion of the machinery structure of a plant, and is considered as a very important mechanical structure for plant safety. Accordingly, it is used in most energy plants in the nuclear, gas, and heavy chemical industries. In particular, the piping system for a nuclear plant is generally complicated and uses the reactor and its cooling system. The piping equipment is exposed to diverse loads such as weight, temperature, pressure, and seismic load from pipes and fluids, and is used to transfer steam, oil, and gas. In ultrasound infrared thermography, which is an active thermography technology, a 15-100 kHz ultrasound wave is applied to the subject, and the resulting heat from the defective parts is measured using a thermography camera. Because this technique can inspect a large area simultaneously and detect defects such as cracks and delamination in real time, it is used to detect defects in the new and renewable energy, car, and aerospace industries, and recently, in piping defect detection. In this study, ultrasound infrared thermography is used to detect information for the diagnosis of nuclear equipment and structures. Test specimens are prepared with piping materials for nuclear plants, and the optimally designed ultrasound horn and ultrasound vibration system is used to determine damages on nuclear plant piping and detect defects. Additionally, the detected images are used to improve the reliability of the surface and internal defect detection for nuclear piping materials, and their field applicability and reliability is verified.

Prediction of Steady-State Stresses within Heat Affected Zone Due to Creep Mismatch in Welded Straight Pipes (직관 용접부의 크리프 특성 불균일에 따른 열영향부 정상상태 응력 예측)

  • Han, Jae-Jun;Kim, Sang-Hyun;Chung, Jin-Taek;Kim, Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.3
    • /
    • pp.405-412
    • /
    • 2013
  • This paper reports the steady-state stresses within the heat affected zone (HAZ) of a welded straight pipe subject to creep. The creep constants and exponent are varied systematically to see the effect of various mismatches in creep properties on the steady-state creep stresses, via detailed two-dimensional finite element (FE) creep analyses. The weldments consist of the base metal and weld metal with the HAZ, which are characterized using the idealized power creep laws with the same creep exponent. The internal pressure and axial loading are considered to see the effect of the loading mode. To quantify the creep stresses, a creep mismatch factor is introduced as a function of the creep constants and exponent. It is concluded that the ratio of the section-averaged stresses for a mismatched case to those for an evenmatched case are linearly dependent on the mismatch factor. The results are compared with the FE results, including the Type IV region, as well as the R5 procedure.

The Plan on the Seismic Design of Electrical Facility Installed in the Building (건축물에 시설되는 수변전설비 내진설계 방안)

  • Kim, Gi-Hyun;Lee, Sang-Ick;Bae, Suk-Myong;Cho, Sung-Gook
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.2
    • /
    • pp.89-95
    • /
    • 2009
  • Recently life and properties damage at Japan and China by generating earthquake. So earthquake generation trend and damage in the earthquake risk, and these are a growing interest in domestic. This paper analyzes domestic site and problems of earthquake measures for electrical facility at transformer vault which supply the power the emergence situation at generating earthquake. Also we present the seismic design of electrical facility using "Building construction design standard" in internal and "Manual of seismic design and construction for Building Electrical facility" in japan. This paper will be used detail seismic design of pipe and facility, reliability inspection plan for seismic design and construction of electrical facility.

An Experimental Study on the Dispersion Characteristics of Seawater Injection Nozzle for Hull Cooling (선체냉각을 위한 해수분사노즐의 산포특성에 관한 실험 연구)

  • Yoon, Seoktae;Jung, Hoseok;Cho, Yongjin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.767-773
    • /
    • 2017
  • Infrared stealth is an important technology for naval ships. This technology helps improve the anti-detection performance and survivability of naval ships. In general, the infrared signature of naval ships are categorized into internal and external heat source. External signature are generated by ship surface heating by solar flux as well as the complicated heat transfer process with the surrounding weather condition. Modern naval ships are equipped with seawater injection nozzles on the outside for nuclear, biological and, chemical, and these nozzles are used to control external signature. Wide nozzle placement intervals and insufficient injection pressure, however, have reduced seawater dispersion area. To address this problem, nozzle installation standards must be established. In this study, an actual-scale experimental system was implemented to provide the evidence for nozzle installation standards in order to reduce the infrared signature of naval ships. In addition, the environmental conditions of the experiment were set up through computational fluid dynamics considering the ocean climate data and naval ship management conditions of South Korea. The dispersion distance was measured using a high-resolution thermography system. The flow rate, pipe pressure, and dispersion distance were analyzed, and the evidence for the installation of seawater injection nozzles and operation performance standards was suggested.

A Study on Failure Mode of Pipe Elbows with Wall Thinning (두께 감소된 배관 엘보우의 파손 모드에 대한 연구)

  • Shin, Kyu-In;Yoon, Kee-Bong
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.2
    • /
    • pp.57-62
    • /
    • 2008
  • Difference of failure modes was studied by finite element analysis for elbows with local wall thinning area particularly at inner surface of intrados of the elbow. Longitudinal wall thinning length, minimum thickness were kept constant but circumferential wall thinning width was varied to get $90^{\circ}$, $180^{\circ}$ and $360^{\circ}$ thinning width. Elastic-plastic analysis were carried out under the combined loading conditions of internal pressure and in-plane bending moment closing the elbow. Von Mises stress were obtained from the outer surface central surface location in intrados, extrados and crown parts in elbow. The results showed that the plastic deformation and failure started from the crown location when the thinning width small ($90{\sim}180^{\circ}$). However, plastic collapse started from the intrados location when the thinning width is approaching $360^{\circ}C$. This should be reflected to assess structural integrity of elbows after wall thinning measurement is made.

  • PDF

Load Bearing Capacity of Welded Joints between Dissimilar Pipelines with Unequal Wall Thickness (두께가 다른 이종배관 용접부 면삭 각도 변화에 따른 하중지지능력 평가)

  • Baek, Jong-Hyun;Kim, Young-Pyo;Kim, Woo-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.9
    • /
    • pp.961-970
    • /
    • 2012
  • The behavior of the load bearing capacity of a pipeline with unequal wall thickness was evaluated using finite element analyses. Pipelines with a wall thickness ratio of 1.22-1.89 were adopted to investigate plastic collapse under tensile, internal pressure, or bending stress. A parametric study showed that the tensile strength and moment of a pipeline with a wall thickness ratio less than 1.5 were not influenced by the wall thickness ratio and taper angle; however, those of a pipeline with a wall thickness ratio more than 1.5 decreased considerably at a low taper angle. The failure pressure of a pipeline with unequal wall thickness was not influenced by the wall thickness ratio and taper angle.

Analysis of Simple Creep Stress Calculation Methods for Creep Life Assessment (크리프 수명 평가를 위한 간략 크리프 응력 산출 방법론 분석)

  • Seo, Jun Min;Lee, Han Sang;Kim, Yun Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.8
    • /
    • pp.703-709
    • /
    • 2017
  • Creep analysis takes much more time than elastic or elastic-plastic analysis. In this study, we conducted elastic and elastic-plastic analysis and compared the results with creep analysis results. In the elastic analysis, we used primary stress, which can be classified by the $M{\alpha}-tangent$ method and stress intensities recommended in the ASME code. In the elastic-plastic analysis, we calculated the parameters recommended in the R5 code. For the FE models, a bending load, uniaxial load, and biaxial load were applied to the cross shaped welded plate, and a bending load and internal pressure were applied to the elbow pipe. To investigate the element size sensitivity, we conducted FE analysis for various element sizes for the cases where bending load was applied to the cross shaped welded plate. There was no significant difference between the creep stress and the alternative methods; however, in the $M{\alpha}-tangent$ method, the results were affected by the element size.

Risk Assessment Using RBI for Internal Corroded Pipelines in CDU Desulfurization Process (CDU 내 탈황공정의 내부부식 된 파이프라인을 대상으로 한 RBI기법을 이용한 위험성 평가)

  • Lim, Donghui;Jeong, Taehun;Lee, In-Dong;Jung, In Hee;Ko, Jae-Wook
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.3
    • /
    • pp.33-39
    • /
    • 2019
  • in 2010s, many factories are operating without any safety guarantees due to the aging process. Although it is difficult to fundamentally solve the problem of aging process and equipment, Prevent risk by risk assessment in advance. This study targets the corrosion caused by sulfur in the piping in the CDU(Crude Distillation Unit) process desulfurization equipment and conducts the risk assessment by RBI(Risk Based Inspection) referring to API RP 581. RBI expresses the risk by combining frequency and consequence, and creates a risk matrix based on these expression. In this study, the hole size of the pipe was selected as Small and Medium, and the sensitivity of the frequency was selected as 'Low'. You can refer to the Risk Matrix created from the standard to evaluate the risk of corrosion of sulfur from pipes in the piping and to plan future accident prevention. Similarly, prevention of aging in a similar way can prevent large and small incidents that are not visible.

A Case Study on Buckling Incidents of Steel Liner under External Water Pressure (외수압에 의한 강관 라이닝 좌굴 사례 연구)

  • Chung, Kyujung;Chung, Kyungmun;Shin, Hyohee;Kim, Daeho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.12
    • /
    • pp.13-20
    • /
    • 2011
  • The main objective of this paper is finding the influence factors and their degree of importance to steel liner's safety by investigating and evaluating the buckling incidents of steel tunnel liner under external water pressure. The study was based on the detailed investigation to the design conditions and incident shapes at 2m diameter waterway tunnel with a partially buckled internal steel liner and concrete backfilled lining as the raw water transmission pipe line of regional water supply project. Appropriate buckling theory capable of applying this incident points was selected by referring the existing literature and compared with the results of investigation. Also, hydrogeological characteristics of this site on buckling pressure was evaluated. The result of this study was shown that both the hydrogeological characteristics of upper geologic layers and proper tunnel construction are important factors on buckling at steel liner, and hydraulic gradient level should be decided according to the hydrogeological characteristics. This incident case analysis on steel liner of pressurized waterway tunnel was expected to provide more information for realizing the problems and improvements at each design, construction and maintenance stages.