• Title/Summary/Keyword: Internal Pipe

Search Result 465, Processing Time 0.03 seconds

A Study on the Heat Transfer Characteristics of a Self-Oscillating Heat Pipe

  • Yoon, Seok-Hun;Cheol Oh;Park, Jae-Hyuk
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.354-362
    • /
    • 2002
  • In this paper, the heat transfer characteristics of a self-oscillating heat pipe are experimentally investigated for the effect of various working fluid fill charge ratios and heat loads. The characteristics of temperature oscillations of the working fluid are also analysed based on chaotic dynamics. The heat pipe is composed of a heating section, a cooling section and an adiabatic section, and has a 0.002m internal diameter, a 0.34m length in each turn and consists of 19 turns. The heating and the cooling portion of each turn has a length of 70mm. A series of experiments was carried out to measure the temperature distributions and the pressure variations of the heat pipe. Furthermore, heat transfer performance, effective thermal conductivity, boiling heat transfer and condensation heat transfer coefficients are calculated for various operating conditions. Experimental results show the efficacy of this type of heat pipe.

The Regulations and Guidelines for Management of Corrosive Water and Pipe Corrosion in Drinking Water Distribution System in North America (상수원 관망 부식 제어를 위한 부식성 수질 관리: 북미지역 관리 사례 및 국외 현황)

  • Kim, Minhee;Hyun, Seunghun;Lee, Won-Seok;Loretta, Y. Li
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.3
    • /
    • pp.359-369
    • /
    • 2017
  • Water distribution systems supply drinking water to consumers' taps. Internal corrosion of metallic pipe used in drinking water distribution systems has reduced water quality and led to increased levels of toxic heavy metals such as lead, copper and nickel. These problems have been experienced to varying degrees by water utilities in many countries. North America has successfully managed and controlled pipe corrosion and corrosive water in water distribution system based on various policies, regulations and rules. Practical and engineering guidelines for evaluation of pipe corrosion and determination of treatment options are also provided to assist drinking water supplies. In addition, the corrosion mechanism in water distribution systems, such as the complex effects of physical and chemical parameters on the corrosion pipes has been improved to accurately predict corrosion rates of metallic pipes in actual water distribution systems. This paper reviews various regulations, policy statement, and treatment produces on controlling corrosion in drinking water distribution systems in US and Canada and then offers suggestion for management of corrosive water and pipe corrosion in drinking water distribution system in Korea.

A Study on High Cycle Temperature Fluctuation Caused by Thermal Striping in a Mixing Tee Pipe (혼합배관 내의 열 경계층 이동으로 인한 고주기 온도요동에 관한 연구)

  • Kim, Seoug-B.;Park, Jong-H.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.5
    • /
    • pp.9-19
    • /
    • 2007
  • Fluid temperature fluctuations in a mixing tee pipe were numerically analyzed by LES model in order to clarify internal turbulent flows and to develope an evaluation method for high-cycle thermal fatigue. Hot and cold water with an temperature difference $40^{\circ}C$ were supplied to the mixing tee. Fluid temperature fluctuations in a mixing tee pipe is analysed by using the computational fluid dynamics code, FLUENT, Temperature fluctuations of the fluid and pipe wall measured as the velocity ratio of the flow in the branch pipe to that in the main pipe was varied from 0.05 to 5.0. The power spectrum method was used to evaluate the heat transfer coefficient. The fluid temperature characteristics were dependent on the velocity ratio, rather than the absolute value of the flow velocity. Large fluid temperature fluctuations were occurred near the mixing tee, and the fluctuation temperature frequency was random. The ratios of the measured heat transfer coefficient to that evaluated by Dittus-Boelter's empirical equation were independent of the velocity ratio, The multiplier ratios were about from 4 to 6.

Effects of Exhaust Pipe Curvature on the Exhaust Noise of a Diesel Engine (디이젤 엔진에서 排氣管의 屈曲度가 排氣 騷音에 미치는 影響)

  • 문병수;김옥현;서정윤
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.3
    • /
    • pp.392-398
    • /
    • 1986
  • It is often occurred that exhaust pipe of an internal combustion engine should be bent due to some geometrical constraints. Especially for automobiles most of exhaust pipes of engines have curvature to avoid rear axles. In this paper effects of pipe curvature on the exhaust noise of a diesel engine have been studied experimentally. Experiments were carried out on a 4-cycle, 2164cc diesel engine. Two types of curvature, circular arc and retangle, were tested. Sound pressure level (SPL) and power spectrum of the exhaust noise were measured by inserting bent pipes of different curvature dimensions into the exhaust pipe at various engine operating conditions. The following results were obtained from this study. Among the engine operating conditions the exhaust noise was affected mainly by engine revolution speed. The noise was reduced by the circular arc bent pipe. The effectiveness of an arc bent pipe on the noise reduction was dominated by its arc angle and the maximum noise reduction was obtained by the angle of 180.deg.. But the noise reduction could not be obtained by the rectangular bent pipe, and at high engine speed the noise was rather increased due to turbulence of exhaust gas.

Resonance analysis of cantilever porous graphene platelet reinforced pipe under external load

  • Huang, Qinghua;Yu, Xinping;Lv, Jun;Zhou, Jilie;Elvenia, Marischa Ray
    • Steel and Composite Structures
    • /
    • v.45 no.3
    • /
    • pp.409-423
    • /
    • 2022
  • Nowadays, there is a high demand for great structural implementation and multifunctionality with excellent mechanical properties. The porous structures reinforced by graphene platelets (GPLs) having valuable properties, such as heat resistance, lightweight, and excellent energy absorption, have been considerably used in different engineering implementations. However, stiffness of porous structures reduces significantly, due to the internal cavities, by adding GPLs into porous medium, effective mechanical properties of the porous structure considerably enhance. This paper is relating to vibration analysis of fluidconveying cantilever porous graphene platelet reinforced (GPLR) pipe with fractional viscoelastic model resting on foundations. A dynamical model of cantilever porous GPLR pipes conveying fluid and resting on a foundation is proposed, and the vibration, natural frequencies and primary resonant of such a system are explored. The pipe body is considered to be composed of GPLR viscoelastic polymeric pipe with porosity in which Halpin-Tsai scheme in conjunction with the fractional viscoelastic model is used to govern the construction relation of nanocomposite pipe. Three different porosity distributions through the pipe thickness are introduced. The harmonic concentrated force is also applied to the pipe and the excitation frequency is close to the first natural frequency. The governing equation for transverse motions of the pipe is derived by the Hamilton principle and then discretized by the Galerkin procedure. In order to obtain the frequency-response equation, the differential equation is solved with the assumption of small displacement, damping coefficient, and excitation amplitude by the multiple scale method. A parametric sensitivity analysis is carried out to reveal the influence of different parameters, such as nanocomposite pipe properties, fluid velocity and nonlinear viscoelastic foundation coefficients, on the primary resonance and linear natural frequency. Results indicate that the GPLs weight fraction porosity coefficient, fractional derivative order and the retardation time have substantial influences on the dynamic response of the system.

Numerical Analysis of Conjugate Heat Transfer in a Curved Piping System Subjected to Internal Stratified Laminar Flow (층류 열성층유동 곡관에 대한 복합열전달 수치해석)

  • Jo Jong Chull;Choi Hoon-Ki
    • Journal of computational fluids engineering
    • /
    • v.7 no.3
    • /
    • pp.35-43
    • /
    • 2002
  • This paper addresses a numerical method for predicting transient temperature distributions in the wall of a curved pipe subjected to internal laminar thermally-stratified flow. A simple and convenient numerical method of treating the unsteady conjugate heat transfer in non-orthogonal coordinate systems is presented. Numerical calculations are performed for the transient evolution of thermal stratification in two curved pipes, where one has thick wall and the other has so thin wall that its presence can be negligible in the heat transfer analysis. The predicted results show that the thermally stratified flow and transient conjugate heat transfer in a curved pipe with a finite wall thickness can be satisfactorily analyzed by the present numerical method, and that the neglect of wall thickness in the prediction of pipe wall temperature distributions can provide unacceptably distorted results for the cases of pipes with thick wall such as safety related-piping systems of nuclear power plant.

Vital Area Identification of Nuclear Facilities by using PSA (PSA기법을 이용한 원자력시설의 핵심구역 파악)

  • Lee, Yoon-Hwan;Jung, Woo-Sik;Hwang, Mee-Jeong;Yang, Joon-Eon
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.5
    • /
    • pp.63-68
    • /
    • 2009
  • The urgent VAI method development is required since "The Act of Physical Protection and Radiological Emergency that is established in 2003" requires an evaluation of physical threats in nuclear facilities and an establishment of physical protection in Korea. The VAI methodology is developed to (1) make a sabotage model by reusing existing fire/flooding/pipe break PSA models, (2) calculate MCSs and TEPSs, (3) select the most cost-effective TEPS among many TEPSs, (4) determine the compartments in a selected TEPS as vital areas, and (5) provide protection measures to the vital areas. The developed VAI methodology contains four steps, (1) collecting the internal level 1 PSA model and information, (2) developing the fire/flood/pipe rupture model based on level 1 PSA model, (3) integrating the fire/flood/pipe rupture model into the sabotage model by JSTAR, and (4) calculating MCSs and TEPS. The VAT process is performed through the VIPEX that was developed in KAERI. This methodology serves as a guide to develop a sabotage model by using existing internal and external PSA models. When this methodology is used to identify the vital areas, it provides the most cost-effective method to save the VAI and physical protection costs.

An experimental study on the effects of an inserted coil on flow patterns and heat transport performances for a horizontal rotating heat pipe (수평 회전 히트파이프에서 내부 삽입 코일이 유동 형태 및 열전달 성능에 미치는 영향에 대한 실험 연구)

  • 이진성;김철주;김선주;문석환
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.6
    • /
    • pp.763-772
    • /
    • 1998
  • The effects of an inserted coil on flow patterns and heat transport performance for a horizontal rotating heat pipe have been studied experimentally. Especially, the present study is to see an internally inserted helical coil inside a RHP would lead to the same kind of results as internal fins. Visualization test conducted for an acryl tube, charged water with at a volumetric rate of 20%. When the flow kept pool regime at a low RPM(less than 1,000 RPM), the movement of coil forced the water to flow in axial direction. But this pumping effect of coil disappeared, when the pool regime changed to annular one which could be created by increasing RPM. The pumping effects for RHP with an inserted coil resulted enhancement both in condensation heat transfer coefficient and heat transport limitation, as obtained in case of using internal fins. But all these effects became negligible in the range of higher RPM(above 1,000∼1,200) with the transition of flow regime to annular flow.

  • PDF

A Study of Structural Response of Pipes due to Internal Gaseous Detonation of Hydrogen- and Hydrogen-Air Mixtures (수소와 탄화수소 계열 연료의 비정상 연소에 의한 파이프 변형 연구)

  • Kim, Dae-Hyun;Yoh, Jai-Ick
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.11
    • /
    • pp.1094-1103
    • /
    • 2008
  • A fuel specific detonation wave in a pipe propagates with a predictable wave velocity. This internal detonation wave speed determines the level of flexural wave excitation of pipes and the possibility of resonant response leading to a large displacement. In this paper, we present particular solutions of displacements and the resonance conditions for internally loaded pipe structures. These analytical results are compared to numerical simulations obtained using a hydrocode(multi-material blast wave analysis tool). We expect to identify potential explosion hazards in the general power industries.

A Study on the Internal Flow Patterns and Heat Transfer Characteristics for a Cylindrical Rotating Heat Pipe (원통형 회전 히트파이프의 내부 유동 및 열전달 특성에 관한 연구)

  • Lee, Jin Sung;Lee, Jae Jun;Kim, Chul Ju
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.9
    • /
    • pp.1217-1228
    • /
    • 1998
  • In order to elucidate the operational characteristics of rotating heat pipes, the internal flow patterns and heat transfer performance are investigated. Flow patterns and its transition are studied with various rotational speeds by visualizing flows established inside a rotating tube. To verify those results of analysis, 2 heat pipes of the same geometries but fill charge rates of 7, 30% were manufactured and submitted to operating tests. Comparison of experimental results on heat transfer rate show a fairly good agreement with the analytical results. The analysis reveals that the optimum charge ratio is ranged in 4~7% depending on the quantity of thermal loads. but the heat pipe with 7% of fill charge ratio reached dry-out limitation at heat flux of $q^{{\prime}{\prime}}=6.2kW/m^2$ lower than that of analytic results. Transition of flow regime was well related to the correlation by Semena & Khmelev on transient centrifugal Froude Number Frc. But hysteresis phenomenon was observed in transition of flow regime, when the rotational speed was stepwisely changed in the way to undergo 1 cycle.