• 제목/요약/키워드: Internal Flow State

검색결과 161건 처리시간 0.027초

Experimental Study on Internal Flow of a Mini Centrifugal Pump by PIV Measurement

  • Wu, Yulin;Yuan, Huijing;Shao, Jie;Liu, Shuhong
    • International Journal of Fluid Machinery and Systems
    • /
    • 제2권2호
    • /
    • pp.121-126
    • /
    • 2009
  • The internal flow field in a centrifugal pump working at the several flow conditions has been measured by using the particle image velocimetry (PIV) technique with the laser induced fluorescence (LIF) particles and the refractive index matched (RIM) facilities. The impeller of the centrifugal pump has an outlet diameter in 100mm, and consists of six two-dimensional curvature backward swept blades of constant thickness. Measured results give reliable flow patterns in the pump. It is obvious that application of LIF particle and RIM are the key methods to obtain the right PIV measured results in pump internal flow.

Numerical Simulation and PIV Measurement on the Internal Flow in a Centrifugal Mini Pump at Low Flow Rate Conditions

  • Yuan, Hui-Jing;Shao, Jie;Cao, Guang-Jun;Liu, Shu-Hong;Wu, Yu-Lin
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.775-780
    • /
    • 2008
  • This paper reports on the internal flow of a centrifugal mini pump working at the low flow rate operating conditions. The RNG $\kappa-\varepsilon$ turbulence model was employed to simulate the three-dimensional turbulent flow in the pump. To examine and certify the simulation results, a transparent acrylic centrifugal mini pump model which is suitable for PIV measurement has been developed. The tongue region and the passages region between blades were investigated using PIV. In order to eliminate the effect of refraction on the area closed to the wall and increase the measurement accuracy, the fluorescent particles were scatted into the working fluid with the tracing particles. It is found from the calculation and PIV measurement results that there is a large area of recirculation flow near the tongue at low flow rate operating conditions. The computationally predicted water head using the $\kappa-\varepsilon$ turbulence model at low flow rate operating conditions are in very good agreement with the experimentally measured water head and the mean velocity distributions at investigation area obtained by PIV and calculation showed a satisfactory agreement as well. Meanwhile, the results of PIV measurements show that the flow status in one passage is different to another. And for capturing the internal flow detail information, the $\kappa-\varepsilon$ turbulence model is not very suitable.

  • PDF

A Study of Performance and Internal Flow in a New Type of Sewage Pump

  • Nishi, Yasuyuki;Fukutomi, Junichiro
    • International Journal of Fluid Machinery and Systems
    • /
    • 제2권3호
    • /
    • pp.239-247
    • /
    • 2009
  • Sewage pumps are designed with a wide flow channel by, for example, sacrificing some efficiency and reducing the number of blades, in order to prevent plugging with foreign bodies. However, the behavior of foreign bodies which actually flow into a pump is extremely complex, and there are questions about whether the presumed foreign bodies will actually pass through. This paper proposes a new type of sewage pump impeller designed to further improve pump efficiency and performance in passing foreign bodies. This sewage pump impeller has a structure in which the suction flow channel of a closed type non-clog pump is wound in a helical spiral. The focus of this research was to investigate pump performance and internal flow in this single blade sewage pump impeller. The results clearly indicated the following facts: The developed sewage pump impeller exhibits high efficiency over a wide range of flow rates; internal flow of the pump is very complicated; and the internal flow state varies greatly when the flow rate changes.

Wind tunnel study on fluctuating internal pressure of open building induced by tangential flow

  • Chen, Sheng;Huang, Peng;Flay, Richard G.J.
    • Wind and Structures
    • /
    • 제32권2호
    • /
    • pp.105-114
    • /
    • 2021
  • This paper describes a wind tunnel test on a 1:25 scale model of TTU building with several adjustable openings in order to comprehensively study the characteristics of fluctuating internal pressures, especially the phenomenon of the increase in fluctuating internal pressures induced by tangential flow over building openings and the mechanism causing that. The effects of several factors, such as wind angle, turbulence intensity, opening location, opening size, opening shape and background porosity on the fluctuating internal pressures at oblique wind angles are also described. It has been found that there is a large increase in the fluctuating internal pressures at certain oblique wind angles (typically around 60° to 80°). These fluctuations are greater than those produced by the flow normal to the opening when the turbulence intensity is low. It is demonstrated that the internal pressure resonances induced by the external pressure fluctuations emanating from flapping shear layers on the sidewall downstream of the windward corner are responsible for the increase in the fluctuating internal pressures. Furthermore, the test results show that apart from the opening shape, all the other factors influence the fluctuating internal pressures and the internal pressure resonances at oblique wind angles to varying degrees.

The influence of internal ring beams on the internal pressure for large cooling towers with wind-thermal coupling effect

  • Ke, Shitang;Yu, Wei;Ge, Yaojun;Zhao, in;Cao, Shuyang
    • Wind and Structures
    • /
    • 제28권1호
    • /
    • pp.1-17
    • /
    • 2019
  • Internal ring beams are primary components of new ring-stiffened cooling towers. In this study, numerical simulation of the internal flow field of a cooling tower with three ring beams under wind-thermal coupling effect is performed. The studied cooling tower is a 220-m super-large hyperbolic indirect natural draft cooling tower that is under construction in China and will be the World's highest cooling tower, the influence of peripheral radiators in operating cooling tower is also considered. Based on the simulation, the three-dimensional effect and distribution pattern of the wind loads on inner surface of the cooling tower is summarized, the average wind pressure distributions on the inner surface before and after the addition of the ring beams are analyzed, and the influence pattern of ring beams on the internal pressure coefficient value is derived. The action mechanisms behind the air flows inside the tower are compared. In addition, the effects of internal ring beams on temperature field characteristics, turbulence kinetic energy distribution, and wind resistance are analyzed. Finally, the internal pressure coefficients are suggested for ring-stiffened cooling towers under wind-thermal coupling effect. The study shows that the influence of internal stiffening ring beams on the internal pressure and flow of cooling towers should not be ignored, and the wind-thermal coupling effect should also be considered in the numerical simulation of cooling tower flow fields. The primary conclusions presented in this paper offer references for determining the internal suction of such ring-stiffened cooling towers.

전단보강철근이 없는 RC보의 트러스 해석기법 연구 (Development of A New Truss Model for RC Beams without Web Reinforcement)

  • 김지훈;정제평;김우
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.1109-1114
    • /
    • 2001
  • This paper describes an attempt to develop a new truss model for reinforced concrete beams failing in shear based on a rational behavioral model. The key idea incorporated with truss model is the internal force state factor which is able to express global state of internal force flow in cracked reinforced concrete beams subjected to shear and bending. A new truss model using internal force state factor may provide a comprehensive result of shear strength in reinforced concrete beams without web reinforcement.

  • PDF

Effect of building proximity on external and internal pressures under tornado-like flow

  • Sabareesh, G.R.;Cao, Shuyang;Wang, Jin;Matsui, Masahiro;Tamura, Yukio
    • Wind and Structures
    • /
    • 제26권3호
    • /
    • pp.163-177
    • /
    • 2018
  • Tornadoes are one of the world's deadliest natural phenomena. They are characterized by short life span and danger. It has been observed through post-damage surveys that localities with large numbers of buildings suffer major damage during a tornado attack resulting in huge loss of life and property. Thus,it is important to study interfering buildings exposed to tornado-like vortices. The present study focuses on external and internal pressures developed on building models exposed to translating tornado-like vortices in the presence of an interfering building model. The effects of translating speed and swirl ratio of a tornado-like vortex on external and internal pressures for a principal building in the vicinity of an interfering building are investigated. Results indicate that external and internal pressures are enhanced or reduced depending on the location of the interfering building with respect to the principal building.

Transient heat transfer and crust evolution during debris bed melting process in the hypothetical severe accident of HPR1000

  • Chao Lv;Gen Li;Jinchen Gao;Jinshi Wang;Junjie Yan
    • Nuclear Engineering and Technology
    • /
    • 제55권8호
    • /
    • pp.3017-3029
    • /
    • 2023
  • In the late in-vessel phase of a nuclear reactor severe accident, the internal heat transfer and crust evolution during the debris bed melting process have important effects on the thermal load distribution along the vessel wall, and further affect the reactor pressure vessel (RPV) failure mode and the state of melt during leakage. This study coupled the phase change model and large eddy simulation to investigate the variations of the temperature, melt liquid fraction, crust and heat flux distributions during the debris bed melting process in the hypothetical severe accident of HPR1000. The results indicated that the heat flow towards the vessel wall and upper surface were similar at the beginning stage of debris melting, but the upward heat flow increased significantly as the development of the molten pool. The maximum heat flux towards the vessel wall reached 0.4 MW/m2. The thickness of lower crust decreased as the debris melting. It was much thicker at the bottom region with the azimuthal angle below 20° and decreased rapidly at the azimuthal angle around 20-50°. The maximum and minimum thicknesses were 2 and 90 mm, respectively. By contrast, the distribution of upper crust was uniform and reached stable state much earlier than the lower crust, with the thickness of about 10 mm. Moreover, the sensitivity analysis of initial condition indicated that as the decrease of time interval from reactor scram to debris bed dried-out, the maximum debris temperature and melt fraction became larger, the lower crust thickness became thinner, but the upper crust had no significant change. The sensitivity analysis of in-vessel retention (IVR) strategies indicated that the passive and active external reactor vessel cooling (ERVC) had little effect on the internal heat transfer and crust evolution. In the case not considering the internal reactor vessel cooling (IRVC), the upper crust was not obvious.

공기의 온도-엔트로피 선도 상에서 13 종류의 물성치 작도 (Plotting of 13 Kinds of Properties on Temperature-Entropy Chart of Air)

  • 김덕진;김덕봉
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.1191-1196
    • /
    • 2009
  • The T-s chart of air displays graphically the thermophysical properties, so it is very conveniently used in various thermal systems. In previous study, the software analyzing 31 kinds of values in water system and 32 kinds of values in air-conditioning system were developed. In this study, the software drawing 13 kinds of quantity of state on air properties as ideal gas and analyzing 25 kinds of values in any air system was developed. The 13 kinds of quantity of state on air properties are temperature, pressure, specific volume, specific internal energy, specific enthalpy, specific entropy, specific exergy, exergy ratio, density, isobaric specific heat, isochoric specific heat, ratio of specific heat, and velocity of sound, and the 25 kinds of values including 13 kinds are mass flow rate, volume flow rate, internal energy flow rate, enthalpy flow rate, entropy flow rate, exergy flow rate, heat flow rate, power output, power efficiency, reversible work, lost work, and relative humidity. The developed software can draw any range of chart and analysis any state or process on air system. Also, this supports various document-editing functions such as power point. We wish to this chart is a help to design, analysis, and education in air system field.

  • PDF

지하철 터널 내 열차풍의 수치해석적 연구 (A NUMERICAL ANALYSIS OF THE TRAIN WIND IN THE SUBWAY TUNNEL)

  • 이준호;쥬레바 막슈다;송동주
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.496-500
    • /
    • 2010
  • Understanding train-wind is the best method to know how to optimize subway ventilation system. The capacity and efficiency of the subway ventilation system are known by pressure and velocity while train runs. Analysis of the internal flow in subway tunnel and around subway station are studied using numerical methods. Characteristics of internal flow and influence of subway ventilation system for the subway station with platform screen door and tunnel are analyzed by unsteady state analysis. Velocity and pressure of train wind transformation are compared at around subway ventilation system and the internal flow is investigated at the subway tunnel.

  • PDF