• Title/Summary/Keyword: Internal Fault

Search Result 249, Processing Time 0.025 seconds

Testing of Advanced Relaying and Design of Prototype IED for Power Transformer Protection (전력용 변압기 보호용 시제품 IED 설계와 개선된 기법의 시험)

  • Park, Chul-Won;Shin, Myong-Chul
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.55 no.1
    • /
    • pp.6-12
    • /
    • 2006
  • A popular method used by primary protection for power transformer is current ratio differential relaying (RDR) with 2nd harmonic restraints. In modern power transformer due to the use of low-loss amorphous material, the 2nd harmonic component during inrush is significantly reduced. The higher the capacitance of the high voltage status and underground distribution, the more the differential current includes the 2nd harmonic component during internal fault. Thus the conventional method may not operate properly. This paper proposes an advanced relaying algorithm and the prototype IED hardware design and it's real-time experimental results. To evaluate performance of the proposed algorithm, the study is well constructed power system model including power transformer utilizing the EMTP software and the testing is made through simulation of various cases. The proposed relaying that is well constructed using DSP chip and microprocessor etc. has been developed and the prototype IED has been verified through on-line testing. The results show that an advanced relaying based prototype IED never mis-operated and correctly identified all the faults and that inrushes that are applied.

A Study on Module Design and Performance of Polymer Arrester (폴리머 피뢰기의 모듈 설계 및 성능에 관한 연구)

  • Cho, Han-Goo;Chun, Jong-Uk;Kang, Yeong-Kil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05e
    • /
    • pp.108-111
    • /
    • 2003
  • The main objective of this paper is to module design and pressure relief test a new type of polymer gapless surge arrester for power distribution line. Metal oxide surge arrester for most electric power system applications, power distribution line and electric train are now being used extensively to protect overvoltage due to lightning. Surge arresters with porcelain housing must not have explosive breakage of the housing to minimize damage to other equipment when subjected to internal high short circuit current. When breakdown of gapless elements in a surge arrester occurs due to flashover, fault short current flows through the arrester and internal pressure of the arrester rises. The pressure rise can usually be limited by fitting a pressure relief diaphragm and transferring the arc from the inside to the outside of the housing. However, there is possibility of porcelain fragmentation caused by the thermal shock, pressure rise, etc. Non-fragmenting of the housing is the most desired way to prevent damage to other equipment. The pressure change which is occurred by flashover become discharge energy. This discharge energy raises to damage arrester housing and arrester housing is dispersed as small fragment. Therefore, the pressure relief design is requested to obstruct housing dispersion.

  • PDF

Relief Performance of Fault Current and Design/Manufacturing of Polymer Arresters for Power Distribution (배전선로용 폴리머 피뢰기의 모듈 설계/제조 및 성능)

  • Cho, Han-Goo;Yun, Han-Su;Jang, Tae-Bong;Chie, In-Hyuk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.05b
    • /
    • pp.175-179
    • /
    • 2005
  • The main objective of this paper is to module design and pressure relief test a new type of polymer gapless surge arrester for power distribution line. Metal oxide surge arrester for most electric power system applications, power distribution line and electric train are now being used extensively to protect overvoltage due to lightning. Surge arresters with porcelain housing must not have explosive breakage of the housing to minimize damage to other equipment when subjected to internal high short circuit current. When breakdown of gapless elements in a surge arrester occurs due to flashover, fault short current flows through the arrester and internal pressure of the arrester rises. The pressure rise can usually be limited by fitting a pressure relief diaphragm and transferring the arc from the inside to the outside of the housing. However, there is possibility of porcelain fragmentation caused by the thermal shock, pressure rise, etc. Non-fragmenting of the housing is the most desired way to prevent damage to other equipment. The pressure change which is occurred by flashover become discharge energy. This discharge energy raises to damage arrester housing and arrester housing is dispersed as small fragment. Therefore, the pressure relief design is requested to obstruct housing dispersion.

  • PDF

An Intelligent Power Transformer Protective Relaying Algorithm Based on Furzy Decision-Making (Fuzzy Decision-Making을 이용한 지능형 변압기 보호 계전 알고리즘)

  • Lee, S.J.;Kang, S.H.;Choe, Myeon-Song;Kim, S.T.;Kang, D.H.;Kim, K.H.;Kim, I.D.;Jang, B.T.;Lim, S.I.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07c
    • /
    • pp.891-893
    • /
    • 1997
  • In this paper an intelligent power transformer protective relaying algorithm based on Fuzzy Decision-Making is presented. The introduced protection algorithm contains several internal fuzzy rule-bases including bpa(Basic Probability Assignment: m) which are subject to off-line pre-installation by the analysis of the transformer transient characteristics for detecting the internal fault. Dempster-Shafer's rule of combination is used for the inference method with rules to decide the situation of a transformer, The proposed algorithm immunes to the saturation of transformer, inrush conditions, over excitation, and external fault. The included results of testing show practically sufficient sensitivity and selectivity of the proposed algorithm.

  • PDF

Current Differential Relaying Algorithm for Power Transformer Protection Operating in Conjunction with a CT Compensating Algorithm (보상 알고리즘을 적용한 변압기 보호용 전류차동 계전방식)

  • Kang, Yang-Cheol;Park, Jong-Min;Lee, Mi-Sun;Jang, Sung-Il;Kim, Yong-Gyun;So, Soon-Hong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.11
    • /
    • pp.1873-1878
    • /
    • 2007
  • Current differential relays may maloperate during magnetic inrush and over-excitation because a significant differential current is produced. To prevent maloperation, the relays adopt some harmonic components included in the differential current. The harmonic restraints may increase the security of a relay but cause the operating time delay of a relay when an internal fault occurs. Moreover, the operating time delay is more increased if a current transformer (CT) is saturated. This paper describes a current differential relaying algorithm for power transformer protection with a compensating algorithm for the secondary current of a CT. The comparative study was conducted with and without the compensating algorithm. The performance of the proposed algorithm was investigated when the measurement CT (C400) and the protection CT (C400) are used. The proposed algorithm can compensate the distorted current of a CT and thus reduce the operating time delay of the relay significantly for an internal fault with CT saturation.

Formation Processes of Fault Gouges and their K-Ar Ages along the Dongnae Fault (동래단층 지역 단층비지의 생성과정과 K-Ar 연령)

  • 장태우;추창오
    • The Journal of Engineering Geology
    • /
    • v.8 no.2
    • /
    • pp.175-188
    • /
    • 1998
  • This paper describes the internal structures and K-Ar ages of fault gouges collected from the Dongnae fault zone. This fault zone is internally zoned and occurs in the multiple fault cores. A fault core consists of thin gouge and narrow cataclastic zones that are bounded by a much thicker damage zone. Intensity of deformation and alteration increases from damage zone through cataclastic zone to gouge zone. It is thought that cataclasis of brittle deformation was the dominant strain-accomodation mechanism in the early stage of deformation to form the gouge zone and that crushed materials in the regions of maximum localization of fault slip subsequently moved by cataclastic flow. Deformation mechanism drastically changed from brittle processes to fluid-assisted flow along the gouge zone as the high porosity and permeability of pulverzied materials during faulting facilitated the influx of the hydrothermal fluids. Subsequently, the fluids reacted with gouge materials to form clay minerals. Fracturing and alteration could have repeatedly taken place in the gouge zone by elevated fluid pressures generated from the reduction of pore volume due to the formation of clay minerals and precipitation of other materials. XRD analysis revealed that the most common clay minerals of the gouge zones are illite and smectite with minor zeolite and kaolinite. Most of illites are composed of 1Md polytype, indicating the products of hydrothermal alteration. The major activities of the Dongnae fault can be divided into two periods based upon K-Ar age data of the fault gouges : 51.4∼57.5Ma and 40.3∼43.6Ma. Judging from the enviromental condition of clay mineral formation, it is inferred that the hydrothermal alteration of older period occured at higher temperature than that of younger period.

  • PDF

Electromagnetic Force Calculation of Internet Winding Fault in A Distribution Power Transformer by using A Numerical Program (수치해석을 이용한 배전용 변압기 권선 고장시의 전자력 계산방법 연구)

  • Shin, Pan-Seok;Ha, Jung-Woo;Chung, Hee-Jun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.5
    • /
    • pp.60-67
    • /
    • 2007
  • In this paper, a simulation method of the internal winding fault is proposed to calculate winding current and electromagnetic force in a distribution power transformer by suing FEM program. The model of the transformer is a single phase, 60[Hz], 1[MVA], 22.9[kV]/220[V], cable-type winding. The short-circuit current and electromagnetic force are calculated by FEM(Finite Element Method) program(Flux2D) and the results we verified with theoretical formula and PSPICE program. The simulation results are fairly good agreement with the other verified methods within 5[%] error rate. The turn-to-turn short-circuit current is 500 times of the rated current and the electromagnetic force is about $20{\sim}200times$. The method presented in this study may serve as one of the useful tools in the electromagnetic force analysis of the transformer winding behavior under the short circuit condition for design of the structure.

A Study on SCOTT Transformer Protection Relay Malfunction Case and Improvement Methodology (스코트 변압기 보호계전기 오동작 사례분석 및 개선방안 고찰)

  • Lee, Jong-Hwa;Lho, Young-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.7
    • /
    • pp.394-399
    • /
    • 2017
  • In Korean AC power railway substations, SCOTT winding transformers are under operation to have a single phase power supply together with a phase angle of $90^{\circ}$ on the secondary side of the main transformer. In the case of an internal fault of the transformer, the transformer protection relay should be cut off on the primary side, the transformer should be inoperative to the external fault of the transformer or to the normal train operation. Reducing the malfunction of the relay through an exact fault determination is very important for securing a stable power system and improving its reliability. The main transformers are protected using Buchholtz's relay and a differential relay as the internal fault detection devices, but there are some cases of the main transformer operation under the deactivation of this protection function due to a malfunction of the differential relay. In this paper, the characteristics of the SCOTT transformer and differential relay as well as the malfunctioning of the protection relays are presented. The modeling of the SCOTT transformer protection relay was accomplished by the power system analysis program and the Comtrade file from 'A substation', which was used as the input data for the fault wave, and the harmonics were analyzed to determine if the relay operates or not. In addition, an improvement plan for malfunctioning cases through wave form analysis is suggested.

Rotor Fault Detection of Induction Motors Using Stator Current Signals and Wavelet Analysis

  • Hyeon Bae;Kim, Youn-Tae;Lee, Sang-Hyuk;Kim, Sungshin;Wang, Bo-Hyeun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.539-542
    • /
    • 2003
  • A motor is the workhorse of our industry. The issues of preventive and condition-based maintenance, online monitoring, system fault detection, diagnosis, and prognosis are of increasing importance. Different internal motor faults (e.g., inter-turn short circuits, broken bearings, broken rotor bars) along with external motor faults (e.g., phase failure, mechanical overload, blocked rotor) are expected to happen sooner or later. This paper introduces the fault detection technique of induction motors based upon the stator current. The fault motors have rotor bar broken or rotor unbalance defect, respectively. The stator currents are measured by the current meters and stored by the time domain. The time domain is not suitable to represent the current signals, so the frequency domain is applied to display the signals. The Fourier Transformer is used for the conversion of the signal. After the conversion of the signals, the features of the signals have to be extracted by the signal processing methods like a wavelet analysis, a spectrum analysis, etc. The discovered features are entered to the pattern classification model such as a neural network model, a polynomial neural network, a fuzzy inference model, etc. This paper describes the fault detection results that use wavelet decomposition. The wavelet analysis is very useful method for the time and frequency domain each. Also it is powerful method to detect the features in the signals.

  • PDF

Application of SFCL on Bus Tie for Parallel Operation of Power Main Transformers in a Fuel Cell Power Systems

  • Chai, Hui-Seok;Kang, Byoung-Wook;Kim, Jin-Seok;Kim, Jae-Chul
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2256-2261
    • /
    • 2015
  • In the power plant using high temperature fuel cells such as Molten Carbonate Fuel Cell(MCFC), and Solid Oxide Fuel Cell(SOFC), the generated electric power per area of power generation facilities is much higher than any other renewable energy sources. - High temperature fuel cell systems are capable of operating at MW rated power output. - It also has a feature that is short for length of the line for connecting the interior of the generation facilities. In normal condition, these points are advantages for voltage drops or power losses. However, in abnormal condition such as fault occurrence in electrical system, the fault currents are increased, because of the small impedance of the short length of power cable. Commonly, to minimize the thermal-mechanical stresses on the stack and increase the systems reliability, we divided the power plant configuration to several banks for parallel operation. However, when a fault occurs in the parallel operation system of power main transformer, the fault currents might exceed the interruption capacity of protective devices. In fact, although the internal voltage level of the fuel cell power plant is the voltage level of distribution systems, we should install the circuit breakers for transmission systems due to fault current. To resolve these problems, the SFCL has been studied as one of the noticeable devices. Therefore, we analyzed the effect of application of the SFCL on bus tie in a fuel cell power plants system using PSCAD/EMTDC.