• Title/Summary/Keyword: Internal Exposure Dose

Search Result 160, Processing Time 0.021 seconds

Verification of Harmonization of Dose Assessment Results According to Internal Exposure Scenarios

  • Kim, Bong-Gi;Ha, Wi-Ho;Kwon, Tae-Eun;Lee, Jun-Ho;Jung, Kyu-Hwan
    • Journal of Radiation Protection and Research
    • /
    • v.43 no.4
    • /
    • pp.143-153
    • /
    • 2018
  • Background: The determination of the amount of radionuclides and internal dose for the worker who may have intake of radionuclides results in a variation due to uncertainty of measurement data and ingestion information. As a result of this, it is possible that for the same internal exposure scenario assessors could make considerably different estimation of internal dose. In order to reduce this difference, internal exposure scenarios for nuclear facilities were developed, and intercomparison were made to determine the harmonization of dose assessment results among the assessors. Materials and Methods: Seven cases on internal exposures incidents that have occurred or may occur were prepared by referring to the intercomparison excercise scenario that NRC and IAEA have carried out. Based on this, 16 nuclear facilities concerned with internal exposure in Korea were asked to evaluate the scenarios. Each result was statistically determined according to the harmonization discrimination criteria developed by IDEAS/IAEA. Results and Discussion: The results were evaluated as having no outliers in all 7 cases. However, the distribution of the results was spread by various causes. They can be divided into two wide categories. The first one is the distribution of the results according to the assumption of the intake factors and the evaluation factors. The second one is distribution due to misapplication of calculation method and factors related to internal exposure. Conclusion: In order to satisfy the harmonization criteria and accuracy of the internal exposure dose evaluation, it is necessary that exact guidelines should be set on low dose, and various intercomparison cases also be needed including high dose exposure as well as the specialized education. The aim of the blind test is to make harmonization evaluation, but it will also contribute to securing the expertise and high quality of dose evaluation data through the discussion among the participants.

Assessment of Fluoride Exposure by Oral Health Behaviors using the ConsExpo Model (ConsExpo 모델을 이용한 구강건강행위에 따른 불소노출평가)

  • Oh, Na-Rae;Jeong, Mi-Ae
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.7
    • /
    • pp.498-504
    • /
    • 2017
  • Oral health behavior such as toothbrushing one's teeth, using dentifrice and such are an important part of improving one's oral health and therefore quality of life. However, it is also necessary to research exposure to harmful chemical substances. Therefore, this study investigated the factors that affect researching fluorine exposure resulting from oral health behavior initiation so that correct oral health guidelines can be provided. As a result of applying the fluorine compound's oral exposure in the ConsExpo 5.0 model, adult males' oral external dose was at 0.000196 mg/kg, oral acute (internal) dose at 0.000196 mg/kg/day and oral chronic (internal) dose at 0.000465 mg/kg/day. In the case of females, the oral dose was at $4.1{\times}10^{-6}mg/kg$, oral acute (internal) dose at $4.1{\times}10^{-6}mg/kg$ and oral chronic (internal) dose at $9.99{\times}10^{-6}mg/kg/day$.

Evaluation Internal Radiation Dose of Pediatric Patients during Medicine Tests Using Monte Carlo Simulation (몬테칼로 시뮬레이션을 이용한 소아 핵의학검사 시 인체내부 장기선량 평가)

  • Lee, Dong-yeon;Kang, Yeong-rok
    • Journal of radiological science and technology
    • /
    • v.44 no.2
    • /
    • pp.109-115
    • /
    • 2021
  • In this study, a physical evaluation of internal radiation exposure in children was conducted using nuclear medicine test(Renal DTPA Dynamic Study) to simulate the distribution and effects of the radiation throughout the tracer kinetics over time. Monte Carlo simulations were performed to determine the internal medical radiation exposure during the tests and to provide basic data for medical radiation exposure management. Specifically, dose variability based on changes in the tracer kinetic was simulated over time. The internal exposure to the target organ (kidney) and other surrounding organs was then quantitatively evaluated and presented. When kidney function was normal, the dose to the target organ(kidney) was approximately 0.433 mGy/mCi, and the dose to the surrounding organs was approximately 0.138-0.266 mGy/mCi. When kidney function was abnormal, the dose to the surrounding organs was 0.228-0.419 mGy/mCi. This study achieved detailed radiation dose measurements in highly sensitive pediatric patients and enabled the prediction of radiation doses according to kidney function values. The proposed method can provide useful insights for medical radiation exposure management, which is particularly important and necessary for pediatric patients.

Analysis of Tritium Concentration in Working Environment and Internal Exposure Dose Assessment for Radiation Workers (방사성 부품 작업환경의 삼중수소 농도 분석 및 작업종사자 내부피폭선량 평가)

  • Gyoungjun Choi;Changwoo Kang
    • Journal of Radiation Industry
    • /
    • v.17 no.2
    • /
    • pp.135-141
    • /
    • 2023
  • Tritium is used in various types of parts such as luminous bodies. These parts are maintained for inspection and replacement at a facility licensed to use radioactive isotopes. This study analyzed the concentration of tritium in working facilities to supplement and develop the safety management system for the maintenance environment of parts containing tritium. In addition, the internal exposure dose was evaluated to analyze the effects of leaked tritium when continuously exposed to workers. As a result of evaluating the internal exposure dose for workers for 30 days, the maximum was 9.70 μSv and the average was 1.45 μSv. Based on the results of this study, the internal radiation exposure safety of workers handling parts containing tritium was confirmed, and additional protective measures to prevent unnecessary exposure to tritium were suggested. This study is expected to contribute to supplementing and developing the radiation safety management system.

DEVELOPMENT OF THE DUAL COUNTING AND INTERNAL DOSE ASSESSMENT METHOD FOR CARBON-14 AT NUCLEAR POWER PLANTS

  • Kim, Hee-Geun;Kong, Tae-Young;Han, Sang-Jun;Lee, Goung-Jin
    • Journal of Radiation Protection and Research
    • /
    • v.34 no.2
    • /
    • pp.55-64
    • /
    • 2009
  • In a pressurized heavy water reactor (PHWR), radiation workers who have access to radiation controlled areas submit their urine samples to health physicists periodically; internal radiation exposure is evaluated by the monitoring of these urine samples. Internal radiation exposure at PHWRs accounts for approximately 20 $\sim$ 40% of total radiation exposure; most internal radiation exposure is attributed to tritium. Carbon-14 is not a dominant nuclide in the radiation exposure of workers, but it is one potential nuclide to be necessarily monitored. Carbon-14 is a low energy beta emitter and passes relatively easily into the body of workers by inhalation because its dominant chemical form is radioactive carbon dioxide ($^{14}CO_2$). Most inhaled carbon-14 is rapidly exhaled from the worker's body, but a small amount of carbon-14 remains inside the body and is excreted by urine. In this study, a method for dual analysis of tritium and carbon-14 in urine samples of workers at nuclear power plants is developed and a method for internal dose assessment using its excretion rate result is established. As a result of the developed dual analysis of tritium and carbon-14 in urine samples of radiation workers who entered the high radiation field area at a PHWR, it was found that internal exposure to carbon-14 is unlikely to occur. In addition, through the urine counting results of radiation workers who participated in the open process of steam generators, it was found that the likelihood of internal exposure to either tritium or carbon-14 is extremely low at pressurized water reactors (PWRs).

Radiological safety assessment of lead shielded spent resin treatment facility with the treatment capacity of 1 ton/day

  • Byun, Jaehoon;Choi, Woo Nyun;Kim, Hee Reyoung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.273-281
    • /
    • 2021
  • The radiological safety of the spent resin treatment facility with a14C treatment capacity of 1 ton/day was evaluated in terms of the external and internal exposure of worker according to operation scenario. In terms of external dose, the annual dose for close work for 1 h/day at a distance of more than 1 m (19.8 mSv) satisfied the annual dose limit. For 8 h of close work per day, the annual dose exceeded the dose limit. For remote work of 2000 h/year, the annual dose was 14.4 mSv. Lead shielding was considered to reduce exposure dose, and the highest annual dose during close work for 1 h/day corresponded to 6.75 mSv. For close work of 2000 h/year and lead thickness exceeding 1.5 cm, the highest value of annual dose was derived as 13.2 mSv. In terms of internal exposure, the initial year dose was estimated to be 1.14E+03 mSv when conservatively 100% of the nuclides were assumed to leak. The allowable outflow rate was derived as 7.77E-02% and 2.00E-01% for the average limit of 20 mSv and the maximum limit of 50 mSv, respectively, where the annual replacement of the worker was required for 50 mSv.

The Measurement of Spatial Dose Rate by Gravity Ventilation after Technegas Scanning (Technegas 스캐닝 후 중력환기에 의한 공간선량율 측정)

  • Kim, Sung-Bin;Won, Do-Yeon
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.4
    • /
    • pp.667-674
    • /
    • 2019
  • Because examination with technegas produces images through simple diffusion accumulation, the examination room can become contaminated after scan. Therefore, radiation workers and patients awaiting examination will be affected by internal exposure from technegas inhalation. Before and after gravity ventilation, I am trying to find a way to reduce the exposure dose of waiting patients according to a comparative analysis of horizontal spatial dose rates over time. Spatial dose ratio were measured for 10 minutes from various distances and angles around ventilator's location before and after gravity ventilation. Then, mean values, standard deviation and reduction ratio were calculated. The highest reduction rate of gravity ventilation was 95.31% and the highest reduction ratio was 1 to 3 minutes. Therefore, the gravity ventilation could reduce the exposure dose of radiologic technologists, waiting patients, patient guardians and nurses. In conclusion, the reduction of the exposure dose during the technegas ventilation study through gravity ventilation will play a role in optimiging the protection and it is in accordance with the recommended reduction of the medical exposure by ICRP 103.

Analysis of Exposure Pathways and the Relative Importance of Radionuclides to Radiation Exposure in the Case of a Severe Accident of a Nuclear Power Plant (원전 중대사고시 피폭경로 및 핵종의 방사선 피폭에 대한 상대적 중요도 해석)

  • Hwang, Won-Tae;Suh, Kyung-Suk;Kim, Eun-Han;Han, Moon-Hee;Kim, Byung-Woo
    • Journal of Radiation Protection and Research
    • /
    • v.19 no.3
    • /
    • pp.209-221
    • /
    • 1994
  • In the case of a severe accident of a nuclear power plant, the whole body dose and the relative importance of the radionuclides during the lifetime of an exposed person were estimated for each exposure pathway with distances from the release point. The external exposure pathways due to immersion of radioactive cloud and deposition of radioactive materials on the ground, and the internal exposure pathways due to inhalation and ingestion of contaminated foodstuffs were considered. The effects due to the ingestion of contaminated foodstuffs were estimated considering the variation of radioactive concentration in the foodstuffs according to deposition time and elapsed time after deposition using a dynamic ingestion pathway model applicable to Korean environment, named 'KORFOOD'. As the results up to 80 km from the release point, the effects due to ingestion of contaminated foodstuffs showed the highest contribution to total exposure dose. The contribution of I isotopes was the highest in the case of the external dose due to immersion of radioactive cloud and internal dose due to inhalation. The contribution of Cs isotopes was highest in the case of the external dose due to deposition of radioactive materials on the ground. In the case of the internal dose due to ingestion of contaminated foodstuffs, Cs deposition in summer and Sr deposition in winter, respectively, were the most dominant radionuclide to whole body.

  • PDF

THE BIDAS-2007: BIOASSAY DATA ANALYSIS SOFTWARE FOR EVALUATING A RADIONUCLIDE INTAKE AND DOSE

  • Lee, Jong-Il;Lee, Tae-Young;Kim, Bong-Whan;Kim, Jang-Lyul
    • Nuclear Engineering and Technology
    • /
    • v.42 no.1
    • /
    • pp.109-114
    • /
    • 2010
  • Bioassay data analysis software (BiDAS-2007) has been developed by KAERI, which adds several new functions to its previous version. New functions of the BiDAS-2007 computer code enable the user not only to do a simultaneous analysis by using two or more types of bioassay for the best internal dose evaluation, but also to do a continual internal dose evaluation from a change of the internal exposure conditions such as an intake type (acute, chronic), an intake pathway (inhalation, ingestion), an absorption type (Type F, M, S), and a particle size (AMAD, activity median aerodynamic diameter), and also to estimate the intakes in various conditions of an internal exposure at a time. The values calculated by the BiDAS-2007 code are consistent and in good agreement with those values by IMIE-2004 code by Berkovski and IMBA code by Birchall. The BiDAS-2007 computer code is very useful and user-friendly to estimate the radionuclide intakes and committed effective doses of a radiation worker.

Characteristics of Internal and External Exposure of Radon and Thoron in Process Handling Monazite (모나자이트 취급공정에서의 라돈 및 토론 노출 특성)

  • Chung, Eun Kyo
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.29 no.2
    • /
    • pp.167-175
    • /
    • 2019
  • Objectives: The purpose of this study was to evaluate airborne radon and thoron levels and estimate the effective doses of workers who made household goods and mattresses using monazite. Methods: Airborne radon and thoron concentrations were measured using continuous monitors (Rad7, Durridge Company Inc., USA). Radon and thoron concentrations in the air were converted to radon doses using the dose conversion factor recommended by the Nuclear Safety and Security Commission in Korea. External exposure to gamma rays was measured at the chest height of a worker from the source using real-time radiation instruments, a survey meter (RadiagemTM 2000, Canberra Industries, Inc., USA), and an ion chamber (OD-01 Hx, STEP Co., Germany). Results: When using monazite, the average concentration range of radon was $13.1-97.8Bq/m^3$ and thoron was $210.1-841.4Bq/m^3$. When monazite was not used, the average concentration range of radon was $2.6-10.8Bq/m^3$ and the maximum was $1.7-66.2Bq/m^3$. Since monazite has a higher content of thorium than uranium, the effects of thoron should be considered. The effective doses of radon and thoron as calculated by the dose conversion factor based on ICRP 115 were 0.26 mSv/yr and 0.76 mSv/yr, respectively, at their maximum values. The external radiation dose rate was $6.7{\mu}Sv/hr$ at chest height and the effective dose was 4.3 mSv/yr at the maximum. Conclusions: Regardless of the use of monazite, the total annual effective doses due to internal and external exposure were 0.03-4.42 mSv/yr. Exposures to levels higher than this value are indicated if dose conversion factors based on the recently published ICRP 137 are applied.