• Title/Summary/Keyword: Internal Cavity

검색결과 393건 처리시간 0.03초

사출성형 공정에서 고화층이 캐비티 압력에 미치는 영향 (Frozen Layer Effect on Internal Cavity Pressure during Injection Molding)

  • 이호상
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.474-479
    • /
    • 2005
  • Experimental and theoretical studies of internal cavity pressure during injection molding of a spiral tube cavity were carried out. The frozen layer thickness and the evolution of internal cavity pressure were calculated using a commercial software (C-MOLD). The evolution of the internal cavity pressure was recorded during injection molding of polystyrene into a spiral tube mold. To explain the differences observed between the calculated and measured internal cavity pressure, a pressure correction factor (PCF) was introduced based on the plane stress theory. This factor was determined by analyzing the stress state in the melt and calculating the frozen layer thickness near the mold wall. The corrected and experimental pressures have been compared to validate the applicability of the pressure correction factor.

  • PDF

재료내 기공결함에 의한 SH형 초음파 원거리 산란장의 신호특성에 대한 수치해석 (Numerical Analysis on the Signal Characteristics for Scattered Far-field of Ultrasonic SH-Wave by the Internal Cavity)

  • 이준현;이서일;박윤원
    • 대한기계학회논문집A
    • /
    • 제24권1호
    • /
    • pp.163-172
    • /
    • 2000
  • In this study, the scattered far-field due to a cavity embedded in infinite media subjected to the incident SH-wave was calculated by the boundary element method. The effects of cavity shape and distance between internal cavity and internal point in infinite media were considered. The scattered far-field of the frequency domain was transformed into the signal of the time domain by using the Inverse Fast Fourier Transform(IFFT). It was found that the amplitude of scattered signal in time domain decreased with the increase of the distance between the detecting points of ultrasonic scattered field and the center of internal cavity in media. In addition, the time delay was clearly found in time domain waveform as the distance between the detecting points of ultrasonic scattered field and the center of internal cavity was gradually increased.

레이저 다이오드의 내부손실 및 내부 양자효율 측정법에 대한 재고찰 (A Reexamination of the Method of Measuring Internal Loss and Quantum Efficiency in Laser Diodes)

  • 한영수;도만희;김상배;정상구
    • 전자공학회논문지A
    • /
    • 제31A권5호
    • /
    • pp.121-125
    • /
    • 1994
  • We examine the conventional method of measuring the internal optical loss using the dependence of the reciprocal external quantum efficiency on the cavity length in laser diodes. It is shown that the implicit assumption of constant internal differential quantum efficiency ${\eta}_{id}$, which has been customarily misinterpreted as internal quantum efficiency ${\eta}_{i}$, is not valid for devices with short cavity length. Therefore, for reliable measurments long cavity data should be used.

  • PDF

Surface Micromachined Pressure Sensor with Internal Substrate Vacuum Cavity

  • Je, Chang Han;Choi, Chang Auck;Lee, Sung Q;Yang, Woo Seok
    • ETRI Journal
    • /
    • 제38권4호
    • /
    • pp.685-694
    • /
    • 2016
  • A surface micromachined piezoresistive pressure sensor with a novel internal substrate vacuum cavity was developed. The proposed internal substrate vacuum cavity is formed by selectively etching the silicon substrate under the sensing diaphragm. For the proposed cavity, a new fabrication process including a cavity side-wall formation, dry isotropic cavity etching, and cavity vacuum sealing was developed that is fully CMOS-compatible, low in cost, and reliable. The sensitivity of the fabricated pressure sensors is 2.80 mV/V/bar and 3.46 mV/V/bar for a rectangular and circular diaphragm, respectively, and the linearity is 0.39% and 0.16% for these two diaphragms. The temperature coefficient of the resistances of the polysilicon piezoresistor is 0.003% to 0.005% per degree of Celsius according to the sensor design. The temperature coefficient of the offset voltage at 1 atm is 0.0019 mV and 0.0051 mV per degree of Celsius for a rectangular and circular diaphragm, respectively. The measurement results demonstrate the feasibility of the proposed pressure sensor as a highly sensitive circuit-integrated pressure sensor.

연료전지용 연료승압 블로어 내부유동장 평가 (Internal Flow Analysis of a Fuel Pressurized Blower for Fuel Cell System)

  • 최가람;장춘만
    • 신재생에너지
    • /
    • 제7권3호
    • /
    • pp.29-35
    • /
    • 2011
  • This paper describes an internal flow characteristics of a fuel pressurized blower, used for 1kW domestic fuel cell system. To analyze the flow field inside the diaphragm cavity, compressible unsteady numerical simulation is introduced. SST model with scalable wall function is employed to estimate the eddy viscosity. Moving mesh system is applied to the numerical analysis for describing the volume change of a diaphragm cavity in time. Throughout numerical simulation with the modeling of the inlet and outlet valves in a diaphragm cavity, unsteady nature of an internal flow is successfully analyzed. Force variations on the lower plate of a diaphragm cavity are evaluated in time. It is found that the driving force at the suction stage of a diaphragm cavity is more necessary than that at the discharging stage.

공조용 압축기의 Cavity Resonance의 측정 및 저감에 관한 연구 (A Study on Measurement and Reduction of Cavity Resonance Based on the Internal Acoustic Modeling of Compressor)

  • 안병하
    • 동력기계공학회지
    • /
    • 제3권2호
    • /
    • pp.26-33
    • /
    • 1999
  • Pressure pulsation Inside the discharge and suction cavity of rotary and scroll compressor are often a major source of objectionable noise and vibration. The key factor of these noise and vibration is due to the cavity resonance. It is not only necessary to understanding the characteristics of pulsation in order to reduce the excitation force of gas to the cavity but also to verifying the phenomena of cavity resonance. For the purpose of these understandings, measurement and simulation of cavity resonance can lead to a better understandings how they occur and be very important to identify the ways to reduce the noise efficiently. In this paper, modeling of the cavity(internal acoustics inside the shell) is discussed and simulated using FEM. Results from the simulation are compared with those measurement in experiments. In describing of cavity mode by experiments, it is very important to specify the exact conditions under which they are measured. Finally, this paper shows the one example of reduced cavity resonance in the compressor.

  • PDF

2차원 Open Cylindrical Cavity의 전자파 투과 및 산란특성연구 (A Study of EM Wave Penetration and Scattering of Open Cylindrical Cavity)

  • 김영주;조영기
    • 대한전자공학회논문지TC
    • /
    • 제38권11호
    • /
    • pp.55-62
    • /
    • 2001
  • 2차원 open cylindrical cavity의 전자파 투과 및 산란특성에 대해 연구하였다. 이러한 구조는 cavity 및 aperture의 크기에 따라 전파의 투과나 산란특성에 특이한 현상이 나타남에도 불구하고 정확한 분석이 이루어지지 않았다. 본 논문에서는 모멘트법의 확장형인 FMM 기법을 이용하여 비교적 광범위하게 open cavity의 특성을 계산하였다. 계산결과 open cylindrical cavity의 경우 closed cavity의 internal mode에 대응하는 external mode가 존재하고, 이때 공진 및 산란특성은 비공진시와 다른 특성을 나타냄을 확인하였다. 연구결과는 전자파의 차폐 및 RCS 통제분야에 응용할 예정이다.

  • PDF

연료전지용 캐소드 공기블로어의 비정상 내부유동장 연구 (Unsteady Internal Flow Analysis of a Cathode Air Blower Used for Fuel Cell System)

  • 장춘만;이종성
    • 신재생에너지
    • /
    • 제8권3호
    • /
    • pp.6-13
    • /
    • 2012
  • This paper describes unsteady internal flow characteristics of a cathode air blower, used for the 1 kW fuel cell system. The cathode air blower considered in the present study is a diaphragm type blower. To analyze the flow field inside the diaphragm cavity, compressible unsteady numerical simulation is performed. Moving mesh system is applied to the numerical analysis for describing the volume change of the diaphragm cavity in time. Throughout a numerical simulation by modeling the inlet and outlet valves in a diaphragm cavity, unsteady nature of an internal flow is successfully analyzed. Variations of mass flow rate, force and pressure on the lower moving plate of a diaphragm cavity are evaluated in time. The computed mass flow rate at the same pressure and rotating frequency of a motor has a maximum of 5 percent error with the experimental data. It is found that flow pattern at the suction process is more complex compared to that at the discharge process. Unsteady nature of internal flow in the cathode air blower is analyzed in detail.

내부 공동과 간극이 종 음향에 미치는 영향에 대한 실험적 연구 (An Experimental Study on the Influence of the Internal Cavity and Gap on the Bell Acoustics)

  • 정원태;강연준;김석현
    • 한국소음진동공학회논문집
    • /
    • 제20권9호
    • /
    • pp.822-827
    • /
    • 2010
  • In this study, it is experimentally investigated how bell acoustics are influenced by the internal cavity of the bell and the gap between the bell bottom and the floor. Acoustic transmission function and natural frequency of a test bell are measured and analysed. Experimental study is conducted to evaluated how the resonance effect influences the bell sound and how the bell sound is different according to the striking condition and the measurement direction. Acoustic resonance frequency of the cavity-gap system is predicted by boundary element analysis using SYSNOIS and the validity of the predicted result is verified by experiment. The result of the study could be applied to determine the optimal gap size which makes the bell sound strong and long.