• 제목/요약/키워드: Internal/External Pressure variation

검색결과 25건 처리시간 0.022초

Reliability analysis of shallow tunnel with surface settlement

  • Yang, X.L.;Li, W.T.
    • Geomechanics and Engineering
    • /
    • 제12권2호
    • /
    • pp.313-326
    • /
    • 2017
  • Based on the reliability theory and limit analysis method, the roof stability of a shallow tunnel is investigated under the condition of surface settlement. Nonlinear Hoek-Brown failure criterion is adopted in the present analysis. With the consideration of surface settlement, the internal energy and external work are calculated. Equating the rate of energy dissipation to the external rate of work, the expression of support pressure is derived. With the help of variational approach, a performance function is proposed to reliability analysis. Improved response surface method is used to calculate the Hasofer-Lind reliability index and the failure probability. In order to assess the validity of the present results, Monte-Carlo simulation is performed to examine the correctness. Sensitivity analysis is used to estimate the influence of different variables on reliability index. Among random variables, the unit weight significantly affects the reliability index. It is found that the greater coefficient of variation of variables lead to the higher failure probability. On the basis of the discussions, the reliability-based design is achieved to calculate the required tunnel support pressure under different situations when the target reliability index is obtained.

실내모형실험을 통한 강우시 사면내 간극수압의 변화 탐구 (Investigation of Pore Water Pressure Variation in Slope during Rainfall from Laboratory Model Tests)

  • 김홍택;유한규;강인규;이혁진
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.199-206
    • /
    • 2001
  • Landslides generally occur due to influences of the internal and external factors. Internal factors include ground characteristics, terrain and so on. External factors can also be divided into natural factors such as rainfall, ground water, earthquake and so on, and artificial factors resulting from cutting and embankments. Among these factors, rainfall becomes the most important external factors by means of which landslides occur in Korea. To appropriately deal with tile effects of pore water pressures due to rainfall, the method using the pore water pressure ratio(r$\_$u/) is generally applied in slope stability analysis or the design of slope reinforcements. Since tire value of r,, is in general not constant over the whole cross section, in most slope stability analyses the average values are used with little loss in accuracy. However, determination of the average values of r$\_$u/ to applied in the design is difficult problem. Therefore, in this study, tile average values of r$\_$u/ according to the intensity of rainfall and slope inclination is suggested based on results of the small scaled model tests using the artificial rainfall apparatus. It is found from the model tests that the average values of r$\_$u/ is about 0.07∼0.18(in case of the intensity of rainfall is 50mm/hr.), about 0.10∼0.28(in case of the intensity of rainfall is 100mm/hr.), and about 0.10∼0.33(in case of the intensity of rainfall is 150mm/hr.).

  • PDF

비대칭형 보강재 간격에 따른 주기구조물의 SPL모드 해석 (Modal Analysis on SPL of the Periodic Structure depend on Unsymmetrical Beam Space)

  • 김택현;김종태
    • 한국공작기계학회논문집
    • /
    • 제11권1호
    • /
    • pp.52-60
    • /
    • 2002
  • The purpose of this research is to study the vibration and acoustic pressure radiation from a thin isotropic flat plate stiffened by a rectangular array of beams, and excited by a time harmonic point force. These constructions on aircraft and ship structures are often subjected to fiequency dependent pressure fluctuations and forces. Forces from the these excitations induce structural vibrations in a wide range of fiequencies, which may cause such things as acoustic fatigue and internal cabin noise in the aircraft. It is thus important that the response characteristics and vibration modes of such periodic structures be horn. From this theoretical model, the sound pressure levels(SPL) in a semi-infinite fluid(water) bounded by the plate with the variation in the locations of an external time harmonic point farce on the plate can be calculated efficiently using three numerical tools such as the Gauss-jordan method the LU decomposition method md the IMSL numerical package.

해저배관의 소성붕괴에 대한 기하학적 형상변화의 효과 (Effect of Geometry Variation on Plastic Collapse of Marine Pipeline)

  • 백종현;김우식
    • 한국가스학회지
    • /
    • 제14권4호
    • /
    • pp.45-50
    • /
    • 2010
  • 해저배관의 안전성 검토를 위하여 수압에 의한 소성붕괴 저항성을 평가하였다. 본 연구에서는 해저배관에 부가되는 주하중을 수압으로 설정하여 배관의 직경대 두께비와 ovality 변화가 배관의 소성붕괴 변화에 미치는 영향을 유한요소해석을 통하여 평가하였다. 내압은 외압에 의한 소성붕괴 저항성을 향상시켜 소성붕괴 발생 깊이를 증가시켰으며, 동일 ovality에서 local ovality를 갖는 배관은 global ovality 보다 더 깊은 붕괴 깊이를 나타내었으며, 소성붕괴 발생 깊이는 직경대 두께비의 증가 또는 ovality 증가에 따라 감소하였다.

수심과 퇴적 깊이 변화에 따른 해저배관의 하중지지능력 평가 (Load-Bearing Capacity of Subsea Pipeline with Variation of Sea Water Depth and Buried Depth)

  • 백종현;김영표;김우식
    • 대한기계학회논문집A
    • /
    • 제36권10호
    • /
    • pp.1131-1137
    • /
    • 2012
  • 해저배관은 부력과 외부 충격을 방지하기 위하여 1.2~4m의 매설 깊이로 설치되어 운영된다. 해저배관은 수압과 토하중에 의한 외압으로부터 소성붕괴에 대한 저항성을 가져야한다. 해저배관에 수압과 토하중으로 발생하는 원주응력을 유한요소해석으로 파악하여 배관의 건전성에 미치는 영향을 평가하였다. 내압은 외압에 의한 소성붕괴 저항성을 향상시켜 소성붕괴 발생 깊이를 증가시켰다 동일 수심에서는 매설 깊이 증가에 따라 원주응력은 증가하나, 동일 매설 깊이에서는 수심이 증가함에 따라 배관에서 발생하는 원주응력은 감소한다.

Electroplating process for the chip component external electrode

  • Lee, Jun-Ho
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2000년도 추계학술발표회 초록집
    • /
    • pp.1-2
    • /
    • 2000
  • In chip plating, several parameters must be taken into consideration. Current density, solution concentration, pH, solution temperature, components volume, chip and media ratio, barrel geometrical shape were most likely found to have an effect to the process yields. The 3 types of barrels utilized in chip plating industry are the onventional rotating barrel, vibrational barrel(vibarrel), and the centrifugal type. Conventional rotating barrel is a close type and is commonly used. The components inside the barrel are circulated by the barrel's rotation at a horizontal axis. Process yield has known to have higher thickness deviation. The vibrational barrel is an open type which offers a wide exposure to electrolyte resulting to a stable thickness deviation. It rotates in a vertical axis coupled with multi-vibration action to facilitate mixed up and easy transportation of components. The centrifugal barrel has its plated work centrifugally compacted against the cathode ring for superior electrical contact with simultaneous rotary motion. This experiment has determined the effect of barrel vibration intensity to the plating thickness distribution. The procedures carried out in the experiment involved the overall plating process., cleaning, rinse, Nickel plating, Tin-Lead plating. Plating time was adjusted to meet the required specification. All other parameters were maintained constant. Two trials were performed to confirm the consistency of the result. The thickness data of the experiment conducted showed thatbthe average mean value obtained from higher vibrational intensity is nearer to the standard mean. The distribution curve shown has a narrower specification limits and it has a reduced variation around the target value. Generally, intensity control in vi-barrel facilitates mixed up and easy transportation of components. However, it is desirable to maintain an optimum vibration intensity to prevent solution intrusion into the chips' internal electrode. A cathodic reaction can occur in the interface of the external and internal electrode. 2H20 + e $\rightarrow$M/TEX> 20H + H2.. Hydrogen can penetrate into the body and create pressure which can cause cracks. At high intensity, the chip's motion becomes stronger, its contact between each other is delayed and so plating action is being controlled. However, the strong impact created by its collision can damage the external electrode's structure there by resulting to bad plating condition.

  • PDF

Influence of latitude wind pressure distribution on the responses of hyperbolodial cooling tower shell

  • Zhang, Jun-Feng;Ge, Yao-Jun;Zhao, Lin
    • Wind and Structures
    • /
    • 제16권6호
    • /
    • pp.579-601
    • /
    • 2013
  • Interference effects are of considerable concern for group hyperboloidal cooling towers, but evaluation methods and results are different from each other because of the insufficient understanding on the structure behavior. Therefore, the mechanical performance of hyperboloidal cooling tower shell under wind loads was illustrated according to some basic properties drawn from horizontal rings and cantilever beams. The hyperboloidal cooling tower shell can be regarded as the coupling of horizontal rings and meridian cantilever beams, and this perception is beneficial for understanding the mechanical performance under wind loads. Afterwards, the mean external latitude wind pressure distribution, CP(${\theta}$), was artificially adjusted to pursue the relationship between different CP(${\theta}$) and wind-induced responses. It was found that the maximum responses in hyperboloidal cooling tower shell are primarily dominated by the non-uniformity of CP(${\theta}$) but not the local pressure amplitude CP or overall resistance/drag coefficient CD. In all the internal forces, the maximum amplitude of meridian axial tension shows remarkable sensitivity to the variation of CP(${\theta}$) and it's also the controlling force in structure design, so it was selected as an indicator to evaluate the influence of CP(${\theta}$) on responses. Based on its sensitivity to different adjustment parameters of CP(${\theta}$), an comprehensive response influence factor, RIF, was deduced to assess the meridian axial tension for arbitrary CP(${\theta}$).

리세스 길이 및 분사압력 변이에 따른 스월 동축형 인젝터의 분무특성 (Spray Characteristics of Swirl-coaxial Injector According to the Recess Length and Injection Pressure Variation)

  • 배성훈;권오채;김정수
    • 한국추진공학회지
    • /
    • 제20권4호
    • /
    • pp.68-76
    • /
    • 2016
  • 본 연구는 이원추진제 추력기의 핵심부품에 대한 성능평가의 일환으로, 기체메탄/액체산소를 추진제로 사용하는 스월 동축형 인젝터의 리세스 길이 및 분사압력에 따른 분무특성 파악을 목표로 하였다. 분무형상은 슐리렌 가시화 기법을 이용하여 획득하였고, 슐리렌장치는 광원, 오목거울, 초고속카메라 등으로 구성된다. 내부 인젝터에 의한 액체 분무의 경우 hollow cone 형상을 확인하였으며, 내부 인젝터 오리피스 길이의 증가와 함께 스월강도 감쇠의 영향으로 분무각은 줄어들었다. 기체-액체를 함께 분사할 때, 분무각은 리세스 길이가 증가함에 따라 외부혼합영역에서 증가하지만, 내부혼합영역에서는 작아졌는데, 액체분무 분사 압력의 높고 낮음에 무관하다는 사실을 확인하였다.

흰쥐의 구속 stress 에 의한 catecholamine 의 변화 (Variation of Catecholamine Content in Rat Vline under the Immo bilization Stress)

  • 김형석
    • 환경위생공학
    • /
    • 제6권2호
    • /
    • pp.59-68
    • /
    • 1991
  • The word of stress was wsed in the field of physics as a external force from 17th century, but the meaning of this stress had chafed to the internal and exteral demand fort the human body in medical area. All the stumulants which make stress was called as j stressor. When animals get stress blucose excreted from liver to adapt for the emergent state ant some related hormone secrete convert protein and lipid to glucose for the purpose of energy supply to muscle. As a results heart rate, blood pressure, respiration rate are increased and musclse are strengthed. These physiolgical reactions ate controlled by autonomic nerve system under the control of hyothalamus in brain. Autonomic nerve system and endocrinary system are react harmoiously to stress reaction. According to the stress reaction, adrenomedullary system are stimulated, and epinephrine, morepinephrine are exceted. Author experimented the effect of the immobilizational stress to rat by analyzing the variaition of catecholamine secrction, the Na concentration and the effect of the antistresf effect by Panax Ginseng which is a traditional Korean herb medicine. The concentration of the norepinephrine, epinephrin, and dopamin in normal rat are 1 578 ng/ml, 0.365 ng/ml, and 0.731 ng/ml respectively, but in the immobilyzed stress groIn the concentration were increased to 1.915 ng.ml, 0.854 ng/ml, and 2,361 ng/ml which she the high show the higher concentration of catecholamine to stressor.

  • PDF

Detection of crack in L-shaped pipes filled with fluid based on transverse natural frequencies

  • Murigendrappa, S.M.;Maiti, S.K.;Srirangarajan, H.R.
    • Structural Engineering and Mechanics
    • /
    • 제21권6호
    • /
    • pp.635-658
    • /
    • 2005
  • The possibility of detecting a crack in L-shaped pipes filled with fluid based on measurement of transverse natural frequencies is examined. The problem is solved by representing the crack by a massless rotational spring, simulating the out-of-plane transverse vibration only without solving the coupled torsional vibration and using the transfer matrix method for solution of the governing equation. The theoretical solutions are verified by experiments. The cracks considered are external, circumferentially oriented and have straight front. Pipes made of aluminium and mild steel are tested with water as internal fluid. Crack size to pipe thickness ratio ranging from 0.20 to 0.57 and fluid (gauge) pressure in the range of 0 to 10 atmospheres are examined. The rotational spring stiffness is obtained by an inverse vibration analysis and deflection method. The details of the two methods are given. The results by the two methods are presented graphically and show good agreement. Crack locations are also determined by the inverse analysis. The maximum absolute error in the location is 13.80%. Experimentally determined variation of rotational spring stiffness with ratio of crack size to thickness is utilized to predict the crack sizes. The maximum absolute errors in prediction of crack size are 17.24% and 16.90% for aluminium and mild steel pipes respectively.