• 제목/요약/키워드: Intermolecular structure

검색결과 155건 처리시간 0.032초

Influence of Intermolecular Interactions on the Structure of Copper Phthalocyanine Layers on Passivated Semiconductor Surfaces

  • Yim, Sang-Gyu;Jones, Tim S.
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권8호
    • /
    • pp.2247-2254
    • /
    • 2010
  • The surface structures of copper phthalocyanine (CuPc) thin films deposited on sulphur-passivated and plane perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA)-covered InAs(100) surfaces have been studied by low energy electron diffraction (LEED) and van der Waals (vdW) intermolecular interaction energy calculations. The annealing to $300^{\circ}C$ and $450^{\circ}C$ of $(NH_4)_2S_x$-treated InAs(100) substrates produces a ($1{\times}1$) and ($2{\times}1$) S-passivated surface respectively. The CuPc deposition onto the PTCDA-covered InAs(100) surface leads to a ring-like diffraction pattern, indicating that the 2D ordered overlayer exists and the structure is dominantly determined by the intermolecular interactions rather than substrate-molecule interactions. However, no ordered LEED patterns were observed for the CuPc on S-passivated InAs(100) surface. The intermolecular interaction energy calculations have been carried out to rationalise this structural difference. In the case of CuPc unit cells on PTCDA layer, the planar layered CuPc structure is more stable than the $\alpha$-herringbone structure, consistent with the experimental LEED results. For CuPc unit cells on a S-($1{\times}1$) layer, however, the $\alpha$-herringbone structure is more stable than the planar layered structure, consistent with the absence of diffraction pattern. The results show that the lattice structure during the initial stages of thin film growth is influenced strongly by the intermolecular interactions at the interface.

Local Structure Study of Liquid Phase Ethylene Glycol and 1,3-propanediol through Density Functional Theory

  • Nam, Seungsoo;Sim, Eunji
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제5회(2016년)
    • /
    • pp.140-146
    • /
    • 2016
  • Using density functional Theory, we studied local structure of liquid ethylene glycol and 1,3-propanediol. For both liquid, making intramolecular hydrogen bonding is not preferred, because relative energy between with and without intramolecular hydrogen bond is only -1.95kcal/mol, which is far less than intermolecular hydrogen bonding energy, about -7.5kcal/mol. Also, hydrogen bond induce polarization of hydroxyl group and make $2^{nd}$ hydrogen bond more stronger. This effect was small in intramolecular hydrogen bond of ethylene glycol. When considering energy per hydrogen bond, making only one intermolecular hydrogen bond for ethylene glycol pair is energetically favored, while two intermolecular hydrogen bond can be formed in 1,3-propanediol pair.

  • PDF

Intermolecular Hydrogen Bonding and Vibrational Analysis of N,N-Dimethylformamide Hexamer Cluster

  • Park, Sun-Kyung;Min, Kyung-Chul;Lee, Choong-Keun;Hong, Soon-Kang;Kim, Yun-Soo;Lee, Nam-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권11호
    • /
    • pp.2595-2602
    • /
    • 2009
  • Hexamer cluster of N,N-dimethylformamide(DMF) based on the crystal structure was investigated for the equilibrium structure, the stabilization energies, and the vibrational properties in the density functional force field. The geometry (point group $C_i$) of fully optimized hexamer clustered DMF shows quite close similarity to the crystal structure weakly intermolecular hydrogen bonded each other. Stretching force constants for intermolecular hydrogen bonded methyl and formyl hydrogen atoms with nearby oxygen atom, methyl C–H${\cdots}$O and formyl C–H${\cdots}$O, were obtained in 0.055 $\sim$ 0.11 and $\sim$ 0.081 mdyn/$\AA$, respectively. In-plane bending force constants for hydrogen bonded methyl hydrogen atoms were in 0.25 $\sim$ 0.33, and for formyl hydrogen $\sim$ 0.55 mdynÅ. Torsion force constants through hydrogen bonding for methyl hydrogen atoms were in 0.038 $\sim$ 0.089, and for formyl hydrogen atom $\sim$ 0.095 mdynÅ. Calculated Raman and infrared spectral features of single and hexamer cluster represent well the experimental spectra of DMF obtained in the liquid state. Noncoincidence between IR and Raman frequency positions of stretching C=O, formyl C–H and other several modes was interpreted in terms of the intermolecular vibrational coupling in the condensed phase.

Raman and Fluorescence Studies of Thermotropic Liquid-Crystalline Oligomers with Different Type of Coils

  • Chae, Jong-Bok;Yu, Soo-Chang;Lee, Youn-Sik
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권2호
    • /
    • pp.193-199
    • /
    • 2007
  • Raman and fluorescence spectroscopies were employed to study the coil effects on the intermolecular structure of a rod-coil liquid crystalline (LC) oligomer, the esterification products of ethyl 4-[4'-oxy-4-biphenylcarbonyloxy]- 4'-biphenylcarboxylate with poly(propylene)oxides (PPO) (DP=12) and poly(ethylene oxide)s (PEO) (DP=12). Three different vibrational modes (carbonyl, aromatic C-H, and aromatic C=C) obtained from the Raman experiment at variable temperature indicate that PPO and PEO coils induce the hydrogen bonding in a different manner. Further information about the micro-environment around the mesogenic unit obtained by fluorescence excitation spectra of P12-4 (LC with PPO coil) and 12-4 (LC with PEO coil) suggests that the mesogenic unit of P12-4 is quite different from that of 12-4 in intermolecular structure. This study supports the results obtained only from Raman spectroscopy, providing more accurate information about the intermolecular structural changes of liquid crystalline polymers at a molecular level during the phase transitions.

In-cell nuclear magnetic resonance spectroscopy for studying intermolecular interactions

  • Sugiki, Toshihiko;Lin, Yuxi;Lee, Young-Ho
    • 한국자기공명학회논문지
    • /
    • 제23권1호
    • /
    • pp.33-39
    • /
    • 2019
  • Studies on the interactions of proteins with partner molecules at the atomic resolution are essential for understanding the biological function of proteins in cells and for developing drug molecules. Solution NMR spectroscopy has shown remarkably useful capability for investigating properties on the weak to strong intermolecular interactions in both diluted and crowded solution such as cell lysates. Of note, the state-of-the-art in-cell NMR method has made it possible to obtain atomistic information on natures of intermolecular interactions between target proteins with partner molecules in living cells. In this mini-review, we comprehensively describe the several technological advances and developments in the in-cell NMR spectroscopy.

Vibrational Analysis and Intermolecular Hydrogen Bonding of Azodicarbonamide in the Pentamer Cluster

  • Lee, Choong-Keun;Park, Sun-Kyung;Min, Kyung-Chul;Kim, Yun-Soo;Lee, Nam-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권10호
    • /
    • pp.1951-1959
    • /
    • 2008
  • Pentamer cluster of azodicarbonamide (ADA) based on the crystalline structure was investigated for the equilibrium structure, the stabilization energies, and the vibrational properties at various levels of the density functional theory. Stretching force constants of N${\cdot}{\cdot}{\cdot}$H or O${\cdot}{\cdot}{\cdot}$H, and angle-bending force constants of N-H${\cdot}{\cdot}{\cdot}$N or N-H${\cdot}{\cdot}{\cdot}$O for intermolecular hydrogen bonds in the pentamer cluster were obtained in 0.2-0.5 mdyn/$\AA$ and 1.6-2.0 mdyn$\AA$, respectively. The geometry of central ADA molecule fully hydrogen bonded with other four molecules shows good coincidence to the crystalline structure except the bond distances of N-H. Calculated Raman and infrared spectra of central ADA molecule in cluster represent well the experimental spectra of ADA obtained in the solid state compared to a single molecule. Detailed structural and vibrational properties of central ADA molecule in the pentamer cluster are presented.

Approach to the Total Synthesis of Acanthoside-D

  • Ngoc, Thyen-Truong;Park, Hae-Il
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2-2
    • /
    • pp.186.4-187
    • /
    • 2003
  • Acanthoside-D, one of major components of Acanthopanacis Cortex, is known as a ginseng-like substance. it has been known to possess diverse biological effects. Acanthoside-D has a furofuran lignan structure and the synthesis of which poses interesting and often unsolved proplems of stereocontrol. Although a few interesting syntheses providing this natural product have been reported, an intermolecular McMurry coupling - intramolecular Mitsunobu cyclization route has not yet been explored. We report here a short and efficient synthetic pathway to the total synthesis of Acanthoside-D from aryl aldehydes and methyl acrylates via Baylis-Hillman reaction, intermolecular McMurry coupling and intramolecular Mitsunobu cyclization as key reaction.

  • PDF

The molecular structure of (+) -6-methoxy-.alpha. 1-2-naphtha-leneacetic acid determined by X-Ray method

  • Kim, Yang-Bae;Song, Hyun-June
    • Archives of Pharmacal Research
    • /
    • 제7권2호
    • /
    • pp.137-139
    • /
    • 1984
  • The molecular structure of (+)-6-Me hoxy-.alpha.-methyl-2-naphthaleneacetic acid (Naproxen), $C_{14}H_{14}O_{ 3}$, was determined by X-Ray diffraction technique. Naproxen crystallized in $P2_1$ with two molecules on the unit cell of dimensions a = 7.855, b = 5.783, c = 13.347$\AA$ and $\beta$ = $93.9^{\circ}$

  • PDF

Ab Initio Study on the Structure and Energetics of (CO)2

  • Park, Young-Choon;Lee, Jae-Shin
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권9호
    • /
    • pp.1421-1426
    • /
    • 2005
  • The stationary point structures and relative energies between them as well as binding energies of $(CO)_2$ have been investigated at the CCSD(T) level using the correlation-consistent basis sets aug-cc-pVXZ(X=T,Q,5). It is found that while the equilibrium structure corresponds to the C-bonded T-shaped configuration with intermolecular distance of 4.4 $\AA$, there exists another minimum, slightly higher in energy ($\sim$10 $cm^{-1}$) than the global minimum, corresponding to the O-bonded T-shaped configuration with the intermolecular distance of 3.9 $\AA$. The CCSD(T) basis set limit binding energy of $(CO)_2$ is estimated to be 132 $cm^{-1}$.