• Title/Summary/Keyword: Intermolecular

Search Result 459, Processing Time 0.03 seconds

Monolayer Characteristics of Bilayer Forming Phosphate Amphiphiles (이분자막 형성능을 가지는 인산형 양친매성 화합물의 단분자막 특성)

  • ;Kunitake, T.
    • Membrane Journal
    • /
    • v.5 no.2
    • /
    • pp.89-96
    • /
    • 1995
  • The monolayer characteristics of phosphate amphiphiles with azobenzene at air/water interface were studied by the measurment of $\pi-A$ curves and absorption spectra. Immediately after being spread on the water surface, these amphiphiles having strong intermolecular hydrogen bonding interactions showed the typical absorption spectra which resulted from domain formation. But the aggregated domains could be controlled by changing the subphase conditions (adding bulky salt and rasing pH). Addition of metal ions in subphase changes the molecular orientation of monolayer. As the metal ion charge increases ($1\leq2$ < 3 < 4 valence), the absorption maximum (310nm) of the amphiphile with azobenzene shifts to a longer wavelength (350nm) which means that the orientation of the amphiphile is tilted. These results suggest that the molecular orientation, and furthermore the aggregation state of monolayer can be possibly controlled by the interaction of metal ions with different charge types.

  • PDF

Multilevel Precision-Based Rational Design of Chemical Inhibitors Targeting the Hydrophobic Cleft of Toxoplasma gondii Apical Membrane Antigen 1 (AMA1)

  • Vetrivel, Umashankar;Muralikumar, Shalini;Mahalakshmi, B;K, Lily Therese;HN, Madhavan;Alameen, Mohamed;Thirumudi, Indhuja
    • Genomics & Informatics
    • /
    • v.14 no.2
    • /
    • pp.53-61
    • /
    • 2016
  • Toxoplasma gondii is an intracellular Apicomplexan parasite and a causative agent of toxoplasmosis in human. It causes encephalitis, uveitis, chorioretinitis, and congenital infection. T. gondii invades the host cell by forming a moving junction (MJ) complex. This complex formation is initiated by intermolecular interactions between the two secretory parasitic proteins-namely, apical membrane antigen 1 (AMA1) and rhoptry neck protein 2 (RON2) and is critically essential for the host invasion process. By this study, we propose two potential leads, NSC95522 and NSC179676 that can efficiently target the AMA1 hydrophobic cleft, which is a hotspot for targeting MJ complex formation. The proposed leads are the result of an exhaustive conformational search-based virtual screen with multilevel precision scoring of the docking affinities. These two compounds surpassed all the precision levels of docking and also the stringent post docking and cumulative molecular dynamics evaluations. Moreover, the backbone flexibility of hotspot residues in the hydrophobic cleft, which has been previously reported to be essential for accommodative binding of RON2 to AMA1, was also highly perturbed by these compounds. Furthermore, binding free energy calculations of these two compounds also revealed a significant affinity to AMA1. Machine learning approaches also predicted these two compounds to possess more relevant activities. Hence, these two leads, NSC95522 and NSC179676, may prove to be potential inhibitors targeting AMA1-RON2 complex formation towards combating toxoplasmosis.

Production of Glucosyl-xylitol Using Encapsulated Whole Cell CGTase (캡슐 고정화 전세포 CGTase를 이용한 Glucosyl-xylitol 생산)

  • 박중곤;박형우;이용현
    • KSBB Journal
    • /
    • v.15 no.1
    • /
    • pp.35-41
    • /
    • 2000
  • We tried to prepare encapsulated whole cell cyclodextrin glucanotransferase(CGTase) in order to produce glycosyl-xylitol using xylitol as glucosyl acceptor. The organic nitrogen source was more effective for the production of CGTase from Bacillus macerans IFO 3490 than the inorganic one. Most of the CGTase which had been produced during cultivation was excreted to the growth medium. B. macerans cells inocculated in the capsule failed to grow to the high cell density. Adsorbents such as activated charcoal, Sephadex and Amberite resins could not adsorb efficiently the CGTase from the broth solution. We obtained successfully the encapsulated whole cell CGTase by immobilizing the concentrated broth solution in the calcium alginate capsules. The encapsulated whole cell CGTase carried out the transglycosylation reaction which converts xylitol into glucosyl-xylitol using dextrin as glucosyl donor.

  • PDF

Absorption analysis of streptavidin-biotin complexes using AFM (AFM을 이용한 스트렙타비딘-바이오틴 단백질 복합체의 흡착 분석)

  • Park, Jee-Eun;Kim, Dong-Sun;Choi, Ho-Jin;Shin, Jang-Kyoo;Kim, Pan-Kyeom;Lim, Geun-Bae
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.237-244
    • /
    • 2006
  • Atomic force microscope (AFM) has become a common tool for the structural and physical studies of biological macromolecules, mainly because it provides the ability to perform experiments with samples in a buffer solution. In this study, structure of proteins and nucleic acids has been studied in their physiological environment that allows native intermolecular complexes to be formed. Cr and Au were deposited on p-Si (100) substrate by thermal evaporation method in sequence with the thickness of $200{\AA}$ and $500{\AA}$, respectively, since Au is adequate for immobilizing biomolecules by forming a self-assembled monolayer (SAM) with semiconductor-based biosensors. The SAM, streptavidin and biotin interacted each other with their specific binding energy and their adsorption was analyzed using the Bio-AFM both in a solution and under air environment. A silicon nitride tip was used as a contact tip of Bio-AFM measurement in a solution and an antimony doped silicon tip as a tapping tip under air environment. Actual morphology could also be obtained by 3-dimensional AFM images. The length and agglomerate size of biomolecules was measured in stages. Furthermore, $R_{a}$ (average of surface roughness) and $R_{ms}$ (mean square of surface roughness) and surface density for the adsorbed surface were also calculated from the AFM image.

Compatibilization of PC/SAN Blends via Ultrasound-irradiated Melt Mixing (초음파가 조사되는 용융 혼합에 의한 폴리카보네이트/스티렌-아크릴로니트릴 혼합물의 상용화)

  • 김형수
    • Polymer(Korea)
    • /
    • v.28 no.3
    • /
    • pp.225-231
    • /
    • 2004
  • High intensity ultrasound was irradiated to induce mechano-chemical degradation during melt processing of polycarbonate (PC) and styrene-co-acrylonitrile (SAN) in an intensive mixer. It was found that macroradicals of PC and SAM can be generated during ultrasound assisted melt processing; which, in turn, provides a useful route to achieve in-situ compatibilization for the blends of PC and SAM by their mutual coupling. Effectiveness of compatibilization was assessed by investigating phase morphology and mechanical properties of the blends. It was observed that domain size was reduced and the stability of morphology was well maintained even after annealing treatment of the blends. In audition, the enhancement of mechanical properties such as elongation at break and tensile strength was evident, which added further confirmation on the desirable feature that sonication of melt-blends is able to enhance intermolecular interaction by promoting chemical bonds between dissimilar polymers without use of any compatibilizers.

MD simulation of structural change of polyethylene induced by high energy ion bombardment

  • Kim, Chan-Soo;Ahmed, Sk. Faruque;Moon, Myoung-Woon;Lee, Kwang-Ryeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.358-358
    • /
    • 2010
  • Ion beam bombardment at low energy forms nanosize patterns such as ripples, dots or wrinkles on the surface of polymers in ambient temperature and pressure. It has been known that the ion beam can alter the polymer surface that induces skins stiffer or the density higher by higher compressive stress or strain energies associated with chain scissions and crosslinks of the polymer. Atomic scale structure evolution in polymers is essential to understand a stress generation mechanism during the ion beam bombardment, which governs the nanoscale surface structure evolution. In this work, Molecular Dynamics (MD) simulations are employed to characterize the phenomenon occurred in bombardment between the ion beam and polymers that forms nanosize patterns. We investigate the structure evolution of Low Density Polyethylene (LDPE) at 300 K as the polymer is bombarded with Argon ions having various kinetic energies ranging from 100 eV to 1 KeV with 50 eV intervals having the fluence of $1.45\;{\times}\;1014 #/cm2$. These simulations use the Reactive Force Field (ReaxFF), which can mimic chemical covalent bonds and includes van der Waals potentials for describing the intermolecular interactions. The results show the details of the structural evolution of LDPE by the low energy Ar ion bombardment. Analyses through kinetic and potential energy, number of crosslinks and chain scissions, level of local densification and motions of atoms support that the residual strain energies on the surface is strongly associated with the number of crosslinks or scissored chains. Also, we could find an optimal Ar ion beam energy to make crosslinks well.

  • PDF

Precursor Chemistry for Atomic Layer Deposition

  • Chung, Taek-Mo;Kim, Chang Gyoun;Park, Bo Keun;Jeon, Dong Ju;An, Ki-Seok;Lee, Sun Sook
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.76.2-76.2
    • /
    • 2013
  • Advanced electronic application areas have strongly required new materials due to the continuous shrinking dimensions of their devices. Specially, the development and use of metal precursors for atomic layer deposition has been extensively focused on application to electronic devices. Thus the systematic design and synthesis of metal compounds with relevant chemical and physical properties, such as stability, volatility, and resistance to air and moisture are very important in the vacuum deposition fields. In many case, organic ligands for metal precursors are especially focused in the related research areas because the large scale synthesis of the metal complexes with excellent properties exclusively depends on the potential usefulness of the ligands. It is recommended for metal complexes to be in monomeric forms because mononuclear complexes generally show high vapor pressures comparing with their oligomeric structure such as dimer and trimer. Simple metal alkoxides complexes are involatile except several examples such as Ti(OiPr)4, Si(OEt)4, and Hf(OtBu)4. Thus the coordinated atom of alkoxide ligands should be crowded in its own environment with some substituents by prohibiting the coordinated atoms from bonding to another metal through oxygen-bridging configuration. Alkoxide ligands containing donor-functionalized group such as amino and alkoxy which can induce the increasing of the coordinative saturation of the metal complexes and the decreasing of the intermolecular interaction between or among the metal compounds. In this presentation, we will discuss the development of metal compounds which adopted donor-functionalized alkoxide ligands derived from their alcohols for electronic application. Some recent results on ALD using metal precursors such as tin, nickel, ruthenium, and tungsten developed in our group will be disclosed.

  • PDF

Synthesis of Poly(Styrene-co-GMA) and its Application as in situ Reactive Compatabilizer (Poly(Styrene-co-GMA)의 합성과 in situ Reactive Compatabilizer 로서의 응용)

  • Kim, Ju-Young;Suh, Kyung-Do
    • Applied Chemistry for Engineering
    • /
    • v.3 no.3
    • /
    • pp.499-506
    • /
    • 1992
  • Copolymer of Styrene and GMA(glycidyl methachylate), having reactive ratios of $r_1=0.53$, $r_2=0.44$, was synthesized in dioxane using AIBN as free radical initiator. Followed by the reaction of ethylene diamine with copolymer PGS, amine groups were introduced to the PGS(NPGS). The composition of copolymer was determined by elemental analyzer. Poly(glycidyl methacrylate) (PGMA) was obtained in benzene using AIBN as free radical initiator. The NPGS-PGMA blend of 50/50 composition was prepared by mixing these polymers in THF at $65^{\circ}C$. Glass transition temperature (Tg) of NPGS-PGMA blend was measured by DSC. The blend showed a single Tg. Accordingly, it was clear that the NPGS was compatible with PGMA. An intermolecular reaction between amine groups of NPGS and epoxy groups of PGMA imparts compatibility in the NPGS-PGMA blend. When the NPGS-PGMA blend was added to the incompatible PS-PGMA blend, PS-PGMA blend showed Tg change. Scanning Electron Micrograph(SEM) showed a fine morphology in this blend. Consequently, it was apparent that the NPGS-PGMA blend acted as a compatibilizer for the PS-PGMA blend.

  • PDF

Influence of vacancy defects on vibration analysis of graphene sheets applying isogeometric method: Molecular and continuum approaches

  • Tahouneh, Vahid;Naei, Mohammad Hasan;Mashhadi, Mahmoud Mosavi
    • Steel and Composite Structures
    • /
    • v.34 no.2
    • /
    • pp.261-277
    • /
    • 2020
  • The main objective of this research paper is to consider vibration analysis of vacancy defected graphene sheet as a nonisotropic structure via molecular dynamic and continuum approaches. The influence of structural defects on the vibration of graphene sheets is considered by applying the mechanical properties of defected graphene sheets. Molecular dynamic simulations have been performed to estimate the mechanical properties of graphene as a nonisotropic structure with single- and double- vacancy defects using open source well-known software i.e., large-scale atomic/molecular massively parallel simulator (LAMMPS). The interactions between the carbon atoms are modelled using Adaptive Intermolecular Reactive Empirical Bond Order (AIREBO) potential. An isogeometric analysis (IGA) based upon non-uniform rational B-spline (NURBS) is employed for approximation of single-layered graphene sheets deflection field and the governing equations are derived using nonlocal elasticity theory. The dependence of small-scale effects, chirality and different defect types on vibrational characteristic of graphene sheets is investigated in this comprehensive research work. In addition, numerical results are validated and compared with those achieved using other analysis, where an excellent agreement is found. The interesting results indicate that increasing the number of missing atoms can lead to decrease the natural frequencies of graphene sheets. It is seen that the degree of the detrimental effects differ with defect type. The Young's and shear modulus of the graphene with SV defects are much smaller than graphene with DV defects. It is also observed that Single Vacancy (SV) clusters cause more reduction in the natural frequencies of SLGS than Double Vacancy (DV) clusters. The effectiveness and the accuracy of the present IGA approach have been demonstrated and it is shown that the IGA is efficient, robust and accurate in terms of nanoplate problems.

Conformational Transition of Form II to Form Ⅰ PoLy(L-proline) and the Aggregation of Form Ⅰ in the Transition: Water-Propanol Solvent System

  • 김현돈
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.9
    • /
    • pp.922-928
    • /
    • 1997
  • The conformational transition of poly(L-proline) (PLP), Form Ⅱ → Form Ⅰ and the intermolecular aggregation of the product, Form Ⅰ, during and after the transition in water-propanol (1:7, 1:9, 1:15.7, and 1:29 v/v) were studied. For the study, the viscosity change and excess light scattering intensity were measured in the course of the transition which was determined by the Form Ⅰ fraction, fI of the sample solution. For the PLP sample of molecular weight Mv=31,000 the experimental results show that the reaction course is roughly divided into three regions: in the first region [fI=0.27 to 0.40 (- [α]D=400 to 330)], the conformational change of Form Ⅱ → Form Ⅰ occurs with decrease of viscosity, in the second region [fI=0.40 to 0.80 (- [α]D=330 to 120)], a partial side-by-side (p-S-S) type aggregation in which Form Ⅰ blocks interact with each other, which induces the increase of viscosity, starts to occur, and in the third region [fI=0.80 to 1.00 (- [α]D=120 to 15)], a side-by-side type (raft like) aggregation of Form Ⅰ or an end-to-end (E-E) type aggregation occurs according to the solvent situation, i.e., in a water-rich medium [water-propanol (1:9 or 1:7 v/v)], the (S-S) type aggregation with a gross decrease in viscosity occurs while in a water-poor medium [water-propanol (1:29 or 1:15.7 v/v), the (E-E) type aggregation with a large increase in viscosity occurs. The (S-S) type aggregation was promoted at high temperatures. Based on the structure of PLP, a reasonable mechanism for the (p-S-S) and (S-S) aggregation which occurs with the transition of Form Ⅱ → Form Ⅰ is considered. The suggested mechanism was also supported by the result of chain length effect of PLP for the aggregation.