• 제목/요약/키워드: Intermolecular

검색결과 459건 처리시간 0.027초

Domain Structure of Liguid Water According to the Theory of Intermolecular Forces

  • 전무식;조웅인
    • 대한화학회지
    • /
    • 제16권3호
    • /
    • pp.135-141
    • /
    • 1972
  • In the past years, a number of theories have been published to elucidate the structure of liquid water. common to most of these theories is that water mainly consist of several different kinds of clusters and also hydrogen bonds in water may be bent to some degree. Recentrly, in a series of paper, Jhon and Eyring successfully explained thermodynamic, dielectric, surface and transport properites of water, assuming that it contains small domains of about 46 molecules. According to the theory, the cluster size does not change with temperature, but the cluster concentration changes. In this paper, the potential function for the hydrogen bond, the dispersion energy and dipole-dipole interaction terms. The calculated results show that the domain of nearly 46 molecules is energetically most probable, and its size is independent of temperature. And also, we evaluated the effect of angel variation of the bent hydrogen bond. In addition, the relaxation energy different for ice and water is also explained by this method.

  • PDF

Dynamic Resolution of α-Bromo Tertiary Amides for Stereoselective Preparation of Dipeptide Analogues

  • Kim, Hyun-Jung;Chang, Ji-Yeon;Shin, Eun-Kyoung;Park, Yong-Sun
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권2호
    • /
    • pp.273-277
    • /
    • 2005
  • Dynamic resolution of $\alpha$-bromo tertiary acetamides in asymmetric nucleophilic substitution reaction is described. Intermolecular substitution of $\alpha$-bromo tertiary acetamides with dibenzylamine in the presence of TBAI and $Et_3N$ gave the dipeptide analogues 7-10 with high stereoselectivities up to 90 : 10 dr. Also, cyclic dipeptide analogues 20-29 were produced by the intramolecular nucleophilic cyclization of $\alpha$-bromo tertiary acetamides with low stereoselectivities in 84-42% yields.

Reduced Density Matrix Theory for Vibrational Absorption Line Shape in Energy Transfer Systems: Non-Condon Effects in Water

  • Yang, Mi-No
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권2호
    • /
    • pp.439-443
    • /
    • 2011
  • Using the projection operator technique, a reduced density matrix theory for linear absorption spectrum of energy transfer systems is developed for the theoretical absorption line shape of the systems with non-Condon transitions. As an application, we considered a model system of OH vibrations of water. In the present model calculation, the OH vibration modes are coupled to each other via intra-molecular coupling mechanism while their intermolecular couplings are turned off. The time-correlation functions appearing in the formulation are calculated from a mixed quantum/classical mechanics method. The present theory is successful in reproducing the exact absorption line shape. Also the present theory was improved from an existing approximate theory, time-averaged approximation approach.

Molecular Dynamics Simulation Study of Transport Properties of Diatomic Gases

  • Lee, Song Hi;Kim, Jahun
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권12호
    • /
    • pp.3527-3531
    • /
    • 2014
  • In this paper, we report thermodynamic and transport properties (diffusion coefficient, viscosity, and thermal conductivity) of diatomic gases ($H_2$, $N_2$, $O_2$, and $Cl_2$) at 273.15 K and 1.00 atm by performing molecular dynamics simulations using Lennard-Jones intermolecular potential and modified Green-Kubo formulas. The results of self-diffusion coefficients of diatomic gases obtained from velocity auto-correlation functions by Green-Kubo relation are in good agreement with those obtained from mean square displacements by Einstein relation. While the results for viscosities of diatomic gases obtained from stress auto-correlation functions underestimate the experimental results, those for thermal conductivities obtained from heat flux auto-correlation functions overestimate the experimental data except $H_2$.

Novel Linking Ligand Containing Sulfur-Donor Atoms and Its Compounds of Palladium and Silver

  • Lee, Hee-K.;Lee, Soon-W.
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권3호
    • /
    • pp.421-426
    • /
    • 2007
  • A linking ligand containing sulfur donor atoms in the terminal thiophene rings, 1,2-bis(thiophen-2-ylmethylene) hydrazine (L), was prepared by Schiff-base condensation. Ligand L reacted with [PdCl2(NCPh)2] to produce a molecular Pd compound [PdL2Cl2] (1). On the other hand, it reacted with AgNO3 and AgClO4 to produce a 2-D network [AgL0.5(NO3)] (2) and a 1-D polymer [AgL]ClO4 (3), respectively, whose structures are based on secondary intermolecular forces such as H-bonding, van der Waals interaction, and π-π stacking. Polymer 2 exhibited photoluminescence at room temperature in the solid state.

A Study of Azo-Hydrazone Tautomerism in 3-Phenyl-4-arylazo-5-isozaolones by $^H-NMR$ spectra of $^{15}N-labeled$ Compounds and HMO Method

  • Shawali, Ahmad S.;Salkaabi, harifia S.;Abdallah, Magda A.
    • Archives of Pharmacal Research
    • /
    • 제14권3호
    • /
    • pp.237-241
    • /
    • 1991
  • The tautomerism in 3-phenyl-4-arylazo-5-isoxazolones 1 was examined by $^1H-NMR$ spectra of $^15N-labeled$ compound and by HMO method. Both spectra data $(^1H-NMR\;and\;IR)$ and bonding energies are in support of the assignment of the hydrazone structure to such compounds. It is further shown that intermolecular and intramolecular hydrogen bondings favor the hydrazone tautomer.

  • PDF

The Crystal Structure of Licarin-B $(C_{20}H_{20}O_4)$, A Component of the Seeds of Myristica fragrans

  • Kim, Yang-Bae;Park, Il-Yeong;Shin, Kuk-Hyun
    • Archives of Pharmacal Research
    • /
    • 제14권1호
    • /
    • pp.1-6
    • /
    • 1991
  • The crystal structure of licarin-B, a component of Myristicae Semen was determined by single crystal X-ray diffraction analysis. Crystal of the compound, which was recrystallized from the mixture of hexane and ether, is monoclinic with a=12.740(1), b=7.219(1), c=9.284(1) ${\AA}$, ${\beta}=94.75(1)^{\circ}$, $D_x=1.26$, $D_m=1.27\;g/cm^3$, space group P21, and Z=2. The structure was solved by direct method and refined by least-squares procedure to the final R value of 0.040 for 1532 independent reflections ${F{\ge}3{\sigma}(F)}$. The compound is a dimeric phenylpropanoid, and belongs to the neolignan analogues. The molecules are arranged along with the screw axis. The intermolecular contacts appear to be the normal van der Waals' forces.

  • PDF

Spectrofluorometric Study of the Interaction of Coumarin Derivatives with Bovine Serum Albumin

  • Kamat, B.P.;Seetharamappa, J.;Kovala-Demertzi, D.
    • Journal of Photoscience
    • /
    • 제11권2호
    • /
    • pp.65-69
    • /
    • 2004
  • The mechanism of interaction of four coumarin derivatives (CDS) with bovine serum albumin (BSA) was studied using spectrofluorometric technique. It was found that the coumarin ring common to all CDS makes major contribution to interaction. Binding affinities could be related to parachor values of CDS. Stem-Volmer plots indicated the presence of static component in the quenching mechanism. Results also showed that both tryptophan residues of protein are accessible to CDS. The high magnitude of rate constant of quenching indicated that the process of energy transfer occurs by intermolecular interaction forces and thus CDS binding site is in close proximity to tryptophan residues of BSA. Binding studies in the presence of the hydrophobic probe, 8-anilino-l-naphthalein-sulfonic acid showed that there is hydrophobic interaction between CDS and the probe and they do not share common sites in BSA. Thermodynamic parameters obtained from data at different temperatures showed that the binding of CDS to BSA involve hydrophobic bonds predominantly. The effects of various metal ions on the binding of CDS with BSA were also investigated.

  • PDF

Mechanical Properties of Cement Mortar: Development of Structure-Property Relationships

  • Ghebrab, Tewodros Tekeste;Soroushian, Parviz
    • International Journal of Concrete Structures and Materials
    • /
    • 제5권1호
    • /
    • pp.3-10
    • /
    • 2011
  • Theoretical models for prediction of the mechanical properties of cement mortar are developed based on the morphology and interactions of cement hydration products, capillary pores and microcracks. The models account for intermolecular interactions involving the nano-scale calcium silicate hydrate (C-S-H) constituents of hydration products, and consider the effects of capillary pores as well as the microcracks within the hydrated cement paste and at the interfacial transition zone (ITZ). Cement mortar was modeled as a three-phase material composed of hydrated cement paste, fine aggregates and ITZ. The Hashin's bound model was used to predict the elastic modulus of mortar as a three-phase composite. Theoretical evaluation of fracture toughness indicated that the frictional pullout of fine aggregates makes major contribution to the fracture energy of cement mortar. Linear fracture mechanics principles were used to model the tensile strength of mortar. The predictions of theoretical models compared reasonably with empirical values.

나노임프린트 리소그래피에서의 폴리머 레지스트의 변형에 관한 분자 동역학 시뮬레이션 (Molecular Dynamics Simulation of Deformation of Polymer Resist in Nanoimpirnt Lithography)

  • 김광섭;김경웅;강지훈
    • 대한기계학회논문집A
    • /
    • 제29권6호
    • /
    • pp.852-859
    • /
    • 2005
  • Molecular dynamics simulations of nanoimprint lithography in which a stamp with patterns is pressed onto amorphous poly-(methylmethacrylate) (PMMA) surface are performed to study the deformation of polymer. Force fields including bond, angle, torsion, inversion, van der Waals and electrostatic potential are used to describe the intermolecular and intramolecular force of PMMA molecules and stamp. Periodic boundary condition is used in horizontal direction and Nose-Hoover thermostat is used to control the system temperature. As the simulation results, the adhesion forces between stamp and polymer are calculated and the mechanism of deformation are investigated. The effects of the adhesion and friction forces on the polymer deformation are also studied to analyze the pattern transfer in nanoimprint lithography. The mechanism of polymer deformation is investigated by means of inspecting the indentation process, molecular configurational properties, and molecular configurational energies.