• 제목/요약/키워드: Intermetallic Alloy

검색결과 276건 처리시간 0.021초

미세피치 패키지 적용을 위한 thin ENEPIG 도금층의 솔더링 특성 (Solderability of thin ENEPIG plating Layer for Fine Pitch Package application)

  • 백종훈;이병석;유세훈;한덕곤;정승부;윤정원
    • 마이크로전자및패키징학회지
    • /
    • 제24권1호
    • /
    • pp.83-90
    • /
    • 2017
  • 본 연구에서는 미세피치 패키지 적용을 위한 기초 실험으로 thin ENEPIG(Electroless Nickel Electroless Palladium Immersion Gold) 도금층을 형성하여 솔더링 특성을 평가하였다. 먼저, Sn-3.0Ag-0.5Cu (SAC305) 솔더합금에 대한 thin ENEPIG 도금층의 젖음 특성이 평가되었으며, 순차적인 솔더와의 반응에 대한 계면반응 및 솔더볼 접합 후 고속 전단 시험을 통한 접합부 기계적 신뢰성이 평가되었다. 젖음성 시험에서 침지 시간이 증가함에 따라 최대 젖음력은 증가하였으며, 5초의 침지 시간 이후에는 최대 젖음력이 일정하게 유지되었다. 초기 계면 반응 동안에는 $(Cu,Ni)_6Sn_5$ 금속간화합물과 P-rich Ni 층이 SAC305/ENEPIG 계면에서 관찰되었다. 연장된 계면반응 후에는 P-rich Ni 층이 파괴 되었으며, 파괴된 P-rich Ni 층 아래에는 $(Cu,Ni)_3Sn$ 금속간화합물이 생성되었다. 고속 전단 시험의 경우, 전단속도가 증가함에 따라 취성 파괴율이 증가하였다.

$CO_2$ 레이저를 이용한 GTD111DS 초합금 용접부의 미세조직과 기계적 성질 (Microstructures and Mechanical Properties of GTD 111DS Welds by $CO_2$ Laser Welding)

  • 이택운;양성호;김상훈
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2009년 추계학술발표대회
    • /
    • pp.108-108
    • /
    • 2009
  • 니켈기지의 석출강화 초내열합금은 가스터빈의 고온부 부품 제조에 널리 사용되고 있다. 장시간 동안 부품의 강성 유지와 구조적 안정성을 확보하기 위해서는 니켈기지의 합금에 감마프라임 생성을 위한 원소를 첨가하는데 이에 따른 용접성의 저하 때문에 보통 초합금의 용접은 고온에서 수행하게 된다. 그러나 레이저용접의 경우는 용접변수 및 입열제어가 용이해 상온에서 초합금의 용접이 가능한 장점이 있다. 본 연구에서는 일반적인 재료로 연성이 좋은 STS304 판재와 실제 블레이드의 재료로 사용되는 니켈계 석출강화 합금인 GTD 111DS 모재에 $CO_2$ 레이저를 이용하여 용접을 실시하였고 적용파우더와 파워, 용접속도 및 파우더 공급량 등을 달리 하였다. STS304 판재 사용시 Rene 80과 IN 625 파우더 모두 용접부에서 균열이 발생하지 않았다. 그러나 GTD 111DS 모재의 경우 IN 625 파우더에서는 결함이 없었으나 Rene 80 파우더를 사용시에는 용접부에 균열이 발생하였다. IN 625 파우더는 모재보다 기계적 성질이 떨어지는 문제가 있으나 Rene 80은 모재와 동등 이상의 기계적 성질을 보유하고 있기 때문에 Rene 80 의 적용을 위해 균열이 발생하지 않는 용접변수의 제어를 시도하였다. 용접변수의 조정 결과 레이저 파워와 파우더 공급량을 낮추고 용접속도를 높여 균열이 발생하지 않는 최적의 용접변수를 설정할 수 있었다. 최적화된 용접변수를 적용, 용접한 시편의 인장값을 보면 GTD 111DS 모재에 Rene 80 파우더로 용접된 시편의 인장강도가 상온/고온($760^{\circ}C$)의 조건에서 각각 GTD 111DS 모재의 인장강도 보다 높은 값을 나타내었다.

  • PDF

The Effect of Carbide Precipitation on the High Temperature Deformation of Ni3Al and TiAl

  • Han, Chang-Suk;Kim, Jang-Woo;Kim, Young-Woo
    • 대한금속재료학회지
    • /
    • 제47권3호
    • /
    • pp.147-154
    • /
    • 2009
  • The effect of carbon addition on the microstructures and mechanical properties of $Ni_3Al$ and TiAl intermetallic alloys have been characterized. It is shown that carbon is not only an efficient solid solution strengthener in $Ni_3Al$ and TiAl, it is also an efficient precipitation strengthener by fine dispersion of carbide. Transmission electron microscope investigation has been performed on the particle-dislocation interactions in $Ni_3Al$ and TiAl intermetallics containing various types of fine precipitates. In an $L1_2$-ordered $Ni_3Al$ alloy with 4 mol.% of chromium and 0.2~3.0 mol.% of carbon, fine octahedral precipitates of $M_{23}C_6$ type carbide, which has the cube-cube orientation relationship with the matrix, appear during aging. Typical Orowan loops are formed in $Ni_3Al$ containing fine dispersions of $M_{23}C_6$ particles. In the L10-ordered TiAl containing 0.1~2.0 mol.% carbon, TEM observations revealed that needle-like precipitates, which lie only in one direction parallel to the [001] axis of the $L1_0$ matrix, appear in the matrix and preferentially at dislocations. Selected area electron diffraction (SAED) patterns analyses have shown that the needle-shaped precipitate is $Ti_3AlC$ of perovskite type. The orientation relationship between the $Ti_3AlC$ and the $L1_0$ matrix is found to be $(001)_{Ti3AlC}//(001)_{L10\;matrix}$ and $[010]_{Ti3AlC}//[010]_{L10\;matrix}$. By aging at higher temperatures or for longer period at 1073 K, plate-like precipitates of $Ti_2AlC$ with a hexagonal structure are formed on the {111} planes of the $L1_0$ matrix. The orientation relationship between the $(0001)_{Ti2AlC}//(111)_{L10\;matrix}$ is and $[1120]_{Ti2AlC}//[101]_{L10\;matrix}$. High temperature strength of TiAl increases appreciably by the precipitation of fine carbide. Dislocations bypass the carbide needles at further higher temperatures.

알루미늄과 마그네슘 첨가가 용융아연 도금강판 도금층의 미세조직과 경도에 미치는 영향 (Effects of Al and Mg on the Microstructure and Hardness of the Coating Layer of Hot-dip Galvanized Steel Sheet)

  • 성윤제;김동규;서준기;한경현;홍범기;김강민;허성욱;박성현;임재택;손승배;이석재;정재길
    • 열처리공학회지
    • /
    • 제36권4호
    • /
    • pp.198-205
    • /
    • 2023
  • We investigated the effects of Al and Mg on the microstructure and hardness of the coating layer of galvanized steel sheets, by thermodynamic calculations, X-ray diffraction, scanning electron microscopy, and Vickers hardness tests of Zn-0.2Al, Zn-6Al-2Mg, and Zn-10Al-5Mg coating layers. Regardless of the alloy composition of the galvanizing bath, a Fe-Al layer was observed between the coating layer and steel sheet. The Zn-0.2Al coating layer consists of major h.c.p. Zn phase and minor f.c.c. Al phase. The fraction of f.c.c. Al phase (containing a significant amount of Zn) of the coating layer increases with increasing the chemical composition of Al of the galvanizing bath. The h.c.p. MgZn2 phase was formed in the Al/Mg-containing Zn-6Al-2Mg and Zn-10Al-5Mg coating layers, forming Zn-Al-MgZn2 eutectic microstructure. The primary MgZn2 phase was additionally formed in the Zn-10Al-5Mg coating layers containing high concentrations of Al and Mg. The Vickers hardness values of Zn-0.2Al, Zn-6Al-2Mg, and Zn-10Al-5Mg coating layers were 59.1 ± 1.2 HV, 161.2 ± 5.7 HV, and 215.5 ± 40.3 HV, respectively. The addition of Al and Mg increased the hardness of the coating layer by increasing the fraction of the Al phase (containing Zn) and MgZn2 intermetallic compound, which were harder than the Zn phase.

Research of Diffusion Bonding of Tungsten/Copper and Their Properties under High Heat Flux

  • Li, Jun;Yang, Jianfeng
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 춘계학술발표대회
    • /
    • pp.14-14
    • /
    • 2011
  • W (tungsten)-alloys will be the most promising plasma facing armor materials in highly loaded plasma interactive components of the next step fusion reactors due to its high melting point, high sputtering resistance and low deuterium/tritium retention. The bonding technology of tungsten to Cu alloy was one of the key issues. In this paper, W/CuCrZr diffusion bonding has been performed successfully by inserting pure metal interlay. The joint microstructure, interfacial elements migration and phase composition were analyzed by SEM, EDS, XRD, and the joint shear strength and micro-hardness were investigated. The mock-ups were fabricated successfully with diffusion bonding and the cladding technology respectively, and the high heat flux test and thermal fatigue test were carried out under actively cooling condition. When Ni foil was used for the bonding of tungsten to CuCrZr, two reaction layers, Ni4W and Ni(W) layer, appeared between the tungsten and Ni interlayer with the optimized condition. Even though Ni4W is hard and brittle, and the strength of the joint was oppositely increased (217 MPa) due primarily to extremely small thicknesses (2~3 ${\mu}m$). When Ti foil was selected as the interlayer, the Ti foil diffused quickly with Cu and was transformed into liquid phase at $1,000^{\circ}C$. Almost all of the liquid was extruded out of the interface zone under bonding pressure, and an extremely thin residual layer (1~2 ${\mu}m$) of the liquid phase was retained between the tungsten and CuCrZr, which shear strength exceeded 160 MPa. When Ni/Ti/Ni multiple interlayers were used for bonding of tungsten to CuCrZr, a large number of intermetallic compound ($Ni_4W/NiTi_2/NiTi/Ni_3T$) were formed for the interdiffusion among W, Ni and Ti. Therefore, the shear strength of the joint was low and just about 85 MPa. The residual stresses in the clad samples with flat, arc, rectangle and trapezoid interface were estimated by Finite Element Analysis. The simulation results show that the flat clad sample was subjected maximum residual stress at the edge of the interface, which could be cracked at the edge and propagated along the interface. As for the rectangle and trapezoid interface, the residual stresses of the interface were lower than that of the flat interface, and the interface of the arc clad sample have lowest residual stress and all of the residual stress with arc interface were divided into different grooved zones, so the probabilities of cracking and propagation were lower than other interfaces. The residual stresses of the mock-ups under high heat flux of 10 $MW/m^2$ were estimated by Finite Element Analysis. The tungsten of the flat interfaces was subjected to tensile stresses (positive $S_x$), and the CuCrZr was subjected to compressive stresses (negative $S_x$). If the interface have a little microcrack, the tungsten of joint was more liable to propagate than the CuCrZr due to the brittle of the tungsten. However, when the flat interface was substituted by arc interfaces, the periodical residual stresses in the joining region were either released or formed a stress field prohibiting the growth or nucleation of the interfacial cracks. Thermal fatigue tests were performed on the mock-ups of flat and arc interface under the heat flux of 10 $MW/m^2$ with the cooling water velocity of 10 m/s. After thermal cycle experiments, a large number of microcracks appeared at the tungsten substrate due to large radial tensile stress on the flat mock-up. The defects would largely affect the heat transfer capability and the structure reliability of the mock-up. As for the arc mock-up, even though some microcracks were found at the interface of the regions, all microcracks with arc interface were divided into different arc-grooved zones, so the propagation of microcracks is difficult.

  • PDF

브레이징 온도 변화에 따른 $ZrO_2$와 Ti-6Al-4V의 접합 특성 (Brazing characteristics of $ZrO_2$ and Ti-6Al-4V brazed joints with increasing temperature)

  • 기세호;박상윤;허영구;정재필;김원중
    • 대한치과보철학회지
    • /
    • 제50권3호
    • /
    • pp.169-175
    • /
    • 2012
  • 연구 목적: 온도 변화에 따른 $ZrO_2$와 Ti-6Al-4V의 접합 특성에 대해 알아보기 위하여 새로운 브레이징 합금을 제조하고, 브레이징 온도가 접합 특성에 미치는 영향에 대하여 조사하고자 하였다. 연구 재료 및 방법: 본 연구에서 사용된 시편으로는 실험용 $ZrO_2$ 모재(ZirBlank-PS, Acucera, Inc., Gyeonggi-do, Korea)는 소결 전의 블록형태($65mm{\times}36mm{\times}12mm(t)$)이며, 이를 잘라 사포(#2400)로 표면연마 후 소결하였다. 소결된 $ZrO_2$ 시편의 크기는 $3mm{\times}3mm{\times}3mm(t)$이다. Ti-6Al-4V 모재(Ti 6Al 4V ELI CG Bar, TMS, Washington, USA)는 직경 $10mm{\times}5mm(t)$를 사용하였다. 소결된 $ZrO_2$와 Ti-6Al-4V의 접합을 위하여 브레이징 합금을 제조하였다. 시편을 3군으로 나누어 A군은 $700^{\circ}C$에서, B군은 $750^{\circ}C$에서, C군은 $800^{\circ}C$에서 각각 브레이징 하였다. 브레이징 부의 두께와 결함율의 측정은 각 군당 하나의 시편으로 각 시편 당 5회씩 반복 측정하여 평균값을 취하였다. 결과: 브레이징 합금을 사용하여 진공 브레이징을 수행한 결과 $ZrO_2$ 와 Ti-6Al-4V 는 $700^{\circ}C-800^{\circ}C$에서 양호한 접합을 보였다. 브레이징 후 브레이징 온도 변화에 따른 브레이징 부의 두께 및 결함율의 변화는 SEM을 사용하여 측정하였다. 브레이징 온도가 $700^{\circ}C$에서 $800^{\circ}C$로 증가함에 따라 CuTi 금속간 화합물 층 및 Ti-Sn-Cu-Ag계 화합물 층의 두께는 각각 $4.5{\mu}m$에서 $10.3{\mu}m$로, $3.1{\mu}m$에서 $5.0{\mu}m$로 증가되었다. 또한 브레이징 온도가 $700^{\circ}C$에서 $800^{\circ}C$로 증가함에 따라 브레이징 접합계면의 결함율은 $ZrO_2$ 및 Ti-6Al-4V 계면에서 각각 25%에서 16.3%, 5%에서 1.5%로 감소되었다. 결론: 브레이징 온도가 $700^{\circ}C$에서 $800^{\circ}C$로 증가됨에 따라, 브레이징 접합계면의 결함율은 $ZrO_2$ 및 Ti-6Al-4V 계면에서 모두 감소되었다. 이는 결함부에서 $ZrO_2$와 활성원소인 Ti과의 반응이 충분히 일어나지 않아서 브레이징 합금이 $ZrO_2$에 웨팅되지 않은 것이 원인이라고 사료된다.