• Title/Summary/Keyword: Intermesh

Search Result 17, Processing Time 0.032 seconds

Optimization of Roller Levelling Process for Aluminum 7001 Pipes with Finite Element Method and Taguchi Method (유한요소해석과 다구찌 방법을 이용한 알루미늄 7001 소재 파이프의 Roller Levelling 공정 최적화)

  • Heo J. H.;Lee H. W.;Huh H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.106-109
    • /
    • 2001
  • Process parameters of roller levelling process are intermesh of each roller, roller angle, roller arrangement and shape of rollers. Experimental optimization of these process parameters is very troublesome because of difficulties in evaluating the straightness of pipes to be levelled quantitatively. Finite element method can be a very efficient way to evaluate the straightness of the pipes and therefore to optimize the process. This paper is concerned with simulation and optimization of a roller levelling process. Process parameters of a 14-roller levller for aluminum T9 pipes are optimized with finite element method and Taguchi method. Parameters of significance in roller levelling process and their optimum are obtained.

  • PDF

Research on Optimal Leveling Conditions of Roller Leveler in Thick Plate Mill (후판 롤교정기의 최적 교정조건 정립에 관한 연구)

  • Lee, Jong-Bin;Kwon, Hyuck-Cheol;Lee, Sung-Jin
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.04a
    • /
    • pp.93-96
    • /
    • 2009
  • The high grade thick plate is in great demand in the ship building industry and the construction industry. The main problems to produce the high grade plate are residual stress and flatness of plate. In the previous research, Finite Element Analysis(FEA) was conducted for cold roller leveler to understand the behaviors of cold roller leveler under different conditions of thickness, intermesh, and yield stress. In this study, a numerical model of roller leveler is developed and the calculated results of this model are compared with the FEA results to show the validity of the numerical model. The optimal leveling conditions to improve flatness of plate are suggested using this numerical model.

  • PDF

Effect of the Leveling Conditions on Residual Stress Evolution of Hot Rolled High Strength Steels by Deformation Analysis of Leveling Process (레벨링 공정 해석에 의한 교정 조건이 열연 고장도 강판의 잔류음력에 미치는 영향 연구)

  • Park, K.C.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.326-329
    • /
    • 2009
  • In order to analyze the effect of leveling conditions on residual stress evolution of hot rolled high strength steels, a numerical algorithm was developed. It was able to implement the effect of plastic fraction (intermesh) in leveling, line tension, work roll bending, and initial residual stress and curl distribution. The effect of work roll bending on residual stress and curl were studied by using the developed program. The validity of simulated results was verified from comparison with the experimentally measured residual stress and curl in a sheet.

  • PDF

Analysis of Deformation and Residual Curvature of Steel Sheets in Strip Process Lines (박강판 제조공정에서의 소재 굽힘변형과 잔류만곡 발생 해석)

  • 박기철;전영우;정기조
    • Transactions of Materials Processing
    • /
    • v.6 no.2
    • /
    • pp.118-135
    • /
    • 1997
  • In order to analyze the deformation and residual curvature of steel sheets in the strip processing lines, a program for calculating curvature and work hardening of sheet was developed. Strip deformation caused by repeated bending under tension in the process lines was analyzed on the basis of the incremental-plasticity theory with the mixed hardenting model for the purpose of predicting the strip shape and the yield stress change. The developed calculation program was applied to predict curl and gutter of sheets within a 10% difference. The yield stress increment was also predicted with the similar accuracy. Application of the model to tension legvelling process showed that gutter could be controlled by intermesh and elongation. The yield stress increment in the electro-galvanizing line calculated by the developed program was found to be dependent on the yield strength, the applied tension and the diameter of the smallest roll.

  • PDF

Development of Gap Measuring System Between Strip and Air Knife in Continuous Galvanizing Line

  • Lee, Jang-Myung;Ryu, Young-Kee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.53.5-53
    • /
    • 2001
  • In continuous galvanizing process at steel making plant, coating weight on the surface of strip that pass through air knife is controlled by the pressure at the chamber of air knife and the gap between the nozzle of air knife and strip. The pressure can be easily measured and controlled. But it is difficult to measure the distance between Air knife nozzle and strip, and also difficult to decide how much distance air knife move. Because, the gap between nozzle and strip varies with the height of air knife, intermesh of stabilizing roll and welding of strips that have different thickness. In this research, we developed a gap sensor that can measure the relative distance between Air knife nozzle and strip. And several tests are performed to find optimal condition for application at real plant. We performed test in which the possibility of the sensor to apply ...

  • PDF

Design Optimization of Roller Straightening Process for Steel Cord using Response Surface Methodology (반응표면법을 이용한 스틸코드의 롤러교정기 설계 최적화)

  • Lee, Jong-Sup;Huh, Hoon;Lee, Jun-Wu;Bae, Jong-Gu;Kim, Deuk-Tae
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.238-241
    • /
    • 2007
  • A roller straightening process is a metal forming technique to improve the geometric quality of products such as straightness and flatness. The geometrical quality can be enhanced by eliminating unnecessary deformations produced during upstream manufacturing processes and minimizing any detrimental internal stress during the roller straightening process. The quality of steel cords can be achieved by the roller straightening depends the process parameters. Such process parameters are the roll intermesh, the roll pitch, the diameter of rolls, the number of rolls and the applied tension. This paper is concerned with the design optimization of the roller straightening process for steel cords with the aid of elasto-plastic finite element analysis. Effects of the process parameters on the straightness of the steel cord are investigated by the finite element analysis. Based on the analysis results, the optimization of the roller straightening process is performed by the response surface method. The roller straightening process using optimum design parameters is carried out in order to confirm the quality of the final products.

  • PDF

Parametric Study on Straightness of Steel Wire in Roller Leveling Process Using Numerical Analysis (수치해석을 이용한 선재 롤러교정공정 주요인자의 직진도 영향 분석)

  • Bang, J.H.;Song, J.H.;Lee, M.G.;Lee, H.J.;Sung, D.Y.;Bae, G.H.
    • Transactions of Materials Processing
    • /
    • v.31 no.5
    • /
    • pp.296-301
    • /
    • 2022
  • In this study, influence of the process parameters of the roller leveling process on the straightness of the steel wire was analyzed using numerical analysis. To construct the numerical analysis model, cross-sectional and longitudinal element sizes, which affect the prediction accuracy of longitudinal stress caused by bending deformation of the steel wire, were optimized, and mass scaling that satisfies prediction accuracy while reducing computational time was confirmed. By using the constructed numerical analysis model, the influence of various process parameters such as input direction of the steel wire, initial diameter of the steel wire, back tension and intermesh on the straightness was confirmed. The simulation result shows that the 3rd and 4th roller of vertical straightener had a significant influence on vertical shape of the steel wire.