• Title/Summary/Keyword: Intermediate moment frame

Search Result 33, Processing Time 0.021 seconds

Evaluation of Structural Performance of Joints Between Modules With Non-Symmetric Section (비대칭 단면으로 구성된 모듈 간 접합부의 구조 성능 평가)

  • Park, Keum-Sung;Lee, Sang-Sup;Moon, Ji-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.2
    • /
    • pp.35-42
    • /
    • 2019
  • The purpose of this paper is to evaluate the structural performance of joints between modules with steel plate press forming type non-symmetric cross section. The main experimental variables are direction of load, whether vertical bolts are fastened, and whether the concrete inside the column is filled. A total of three experiments were performed for each variable. Experimental results show that the behavior of the joints dominated by the local buckling deformation of the upper and lower beam flanges of the module joints, and the final failure was the fracture of the column-beam welds. In case of short side direction, it is possible to secure the performance of intermediate moment frame (0.02 rad). In case of long side direction, it is evaluated that the performance of special moment frame (0.04 rad) is secured regardless of whether or not concrete is infilled in the column.

Evaluation of Mechanical Joint Structural Performance through Actual Performance Testing of PC Connections (PC 접합부의 실물 성능실험을 통한 기계식이음 구조성능 평가)

  • Kim, Jae Young;Kim, Yong Nam;Seo, Min Jung;Kim, Beom Jin;Kim, Sung Jig;Lee, Kihak
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.129-139
    • /
    • 2024
  • In this study, the SBC system, a new mechanical joint method, was developed to improve the constructability of precast concrete (PC) beam-column connections. The reliability of the finite element analysis model was verified through the comparison of experimental results and FEM analysis results. Recently, the intermediate moment frame, a seismic force resistance system, has served as a ramen structure that resists seismic force through beams and columns and has few load-bearing walls, so it is increasingly being applied to PC warehouses and PC factories with high loads and long spans. However, looking at the existing PC beam-column anchorage details, the wire, strand, and lower main bar are overlapped with the anchorage rebar at the end, so they do not satisfy the joint and anchorage requirements for reinforcing bars (KDS 41 17 00 9.3). Therefore, a mechanical joint method (SBC) was developed to meet the relevant standards and improve constructability. Tensile and bending experiments were conducted to examine structural performance, and a finite element analysis model was created. The load-displacement curve and failure pattern confirmed that both the experimental and analysis results were similar, and it was verified that a reliable finite element analysis model was built. In addition, bending tests showed that the larger the thickness of the bolt joint surface of the SBC, the better its structural performance. It was also determined that the system could improve energy dissipation ability and ductility through buckling and yielding occurring in the SBC.

Performance of reinforced concrete moment resisting frames in Sarpol-e Zahab earthquake (November 12, 2017, Mw=7.3), Iran

  • Mohammad Amir Najafgholipour;Mehrdad Khajepour
    • Earthquakes and Structures
    • /
    • v.25 no.1
    • /
    • pp.1-13
    • /
    • 2023
  • Reinforced concrete (RC) moment frames are used as lateral seismic load resisting systems in mid- and high-rise buildings in different regions of the world. Based on the seismic design provisions and construction details presented in design codes, RC frames with different levels of ductility (ordinary, intermediate, and special) can be designed and constructed. In Iran, there are RC buildings with various uses which have been constructed based on different editions of design codes. The seismic performance of RC structures (particularly moment frames) in real seismic events is of great importance. In this paper, the observations made on damaged RC moment frames after the destructive Sarpol-e Zahab earthquake with a moment magnitude of 7.3 are reported. Different levels of damage from the development of cracks in the structural and non-structural elements to the total collapse of buildings were observed. Furthermore, undesirable failure modes which are not expected in ductile seismic-resistant buildings were frequently observed in the damaged buildings. The RC moment frames built based on the previous editions of the design codes showed partial or total collapse in this seismic event. The extensive destruction of RC moment frames compared with the other structural systems (such as braced steel frames and confined masonry buildings) was attributed not only to the deficiencies in the construction practice of these buildings but also to the design procedure. In addition, the failure and collapse of masonry infills in RC moment frames were frequent modes of failure in this seismic event. In this paper, the main reasons related to design practice which led to extensive damage in the RC moment frames and their collapse are addressed.

Demand response modification factor for the investigation of inelastic response of base isolated structures

  • Cheraghi, Rashid Eddin;Izadifarda, Ramezan Ali
    • Earthquakes and Structures
    • /
    • v.5 no.1
    • /
    • pp.23-48
    • /
    • 2013
  • In this study, the effect of flexibility of superstructures and nonlinear characteristics of LRB (Lead Rubber Bearing) isolator on inelastic response of base isolated structures is investigated. To demonstrate the intensity of damage in superstructures, demand response modification factor without the consideration of damping reduction factor, demand RI, is used and the N2 method is applied to compute this factor. To evaluate the influence of superstructure flexibility on inelastic response of base isolated structures, different steel intermediate moment resisting frames with different heights have been investigated. In lead rubber bearing, the rubber provides flexibility and the lead is the source of damping; variations of aforementioned characteristics are also investigated on inelastic response of superstructures. It is observed that an increase in height of superstructure leads to higher value of demand RI till 4-story frame but afterward this factor remains constant; in other words, an increase in height until 4-story frame causes more damage in the superstructure but after that superstructure's damage is equal to the 4-story frame's. The results demonstrate that the low value of second stiffness (rubber stiffness in LRBs) tends to show a significant decrease in demand RI. Increase in value of characteristic strength (yield strength of the lead in LRBs) leads to decrease in the demand RI.

Seismic Performance Evaluation of Steel Moment Frames in Korea Using Nonlinear Dynamic Analysis (비선형동적해석을 통한 국내 철골 모멘트골조의 내진성능 평가)

  • Kim, Tae-Wan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.1-8
    • /
    • 2012
  • Domestic steel moment resisting frames were designed in accordance with the former KBC2005 and the current KBC2009, and then their seismic performance was evaluated in accordance with FEMA355F by utilizing nonlinear dynamic analysis. The results from the procedure in FEMA355F were different with those from the capacity spectrum method utilizing nonlinear static push-over analysis. In particular, the domestic steel moment resisting frames have a weak panel zone, so their behavior can be estimated more precisely by nonlinear dynamic analysis. The domestic steel moment resisting frames satisfied the performance goal if located at a site class $S_B$ or $S_C$, regardless of the story number and the response modification factor. However, if they are located at a site class $S_D$ or $S_E$, performance goal satisfaction cannot be guaranteed. No matter what standard is used for the design, KBC2005 or KBC2009, the domestic steel moment resisting frames may possess satisfactory seismic performance if the site condition is relatively good.

Collapse Capacity Evaluation of Steel Intermediate Moment Frames Using Incremental Dynamic Analysis (비선형 증분동적해석을 통한 철골 중간모멘트 골조의 붕괴성능 평가)

  • Shin, Dong-Hyeon;Kim, Hyung-Joon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.2
    • /
    • pp.9-20
    • /
    • 2014
  • Steel intermediate moment frames (IMFs) have been generally used as seismic load resisting systems (SLRSs) of a building to provide resistances against strong ground shaking. However, most of low and mid-rise steel buildings in Korea were constructed during pre-seismic code era or before the introduction of well-organized current seismic codes. It has been recognized that the seismic performance of these steel IMFs is still questionable. In order to respond to such a question, this study quantitatively investigates the seismic capacities of steel IMFs. Prototype models are built according to the number of stories, the levels of elastic seismic design base shear and the ductilities of structural components. Also, the other prototype models employing hysteretic energy dissipating devices (HEDDs) are considered. The collapse mechanism and the seismic performance of the prototype models are then described based on the results obtained from nonlinear-static and incremental-dynamic analyses. The seismic performance of the prototype models is assessed from collapse margin ratio (CMR) and collapse probability. From the assessment, the prototype model representing new steel IMFs has enough seismic capacities while, the prototype models representing existing steel IMFs provide higher collapse probabilities. From the analytic results of the prototype models retrofitted with HEDDs, the HEDDs enhance the seismic performance and collapse capacity of the existing steel IMFs. This is due to the energy dissipating capacity of the HEDDs and the redistribution of plastic hinges.

Seismic Performance Evaluation of Steel Moment Resisting Frame Systems According to an Improved Design Method of RBS-B Connections (RBS-B 접합부 설계식 개선에 따른 철골모멘트골조 시스템의 내진성능평가)

  • Han, Sang-Whan;Kang, Ki-Byung;Moon, Ki-Hoon;Hwang, Seong-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.6
    • /
    • pp.75-84
    • /
    • 2010
  • In current seismic design provisions, a reduced beam section with bolted web (RBS-B) connections is only permitted for intermediate moment frames (IMF). This study evaluated the seismic performance of steel moment resisting frame systems having RBS-B connections designed according to current seismic design provisions. For this purpose, 12 archetypal IMF systems having two different span lengths (9m, 6m) were designed considering two design load levels (SDC $C_{max}$, SDC $C_{min}$). A nonlinear analytical model that can simulate hysteretic behavior of an RBS-B connection was also developed in this study. The procedures specified in ATC 63 are used to conduct a seismic performance evaluation. Moreover, this study conducts the seismic performance evaluation of IMF systems designed according to a new design method proposed by the authors in the previous study. It was observed that several model frames designed according to current seismic design provisions did not provide satisfactory collapse margin ratios (ACMR). This study also showed that the model frames designed according to the new design procedures had a sufficient ACMR.

Connection Performance of Steel Moment Frame with Out-of-Plane Beam Skew (면외방향 어긋난 보를 갖는 철골모멘트골조의 접합부 성능)

  • Hong, Jong-Kook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.2
    • /
    • pp.84-91
    • /
    • 2022
  • This study investigated the behavior of out-of-plane skewed moment connections that were designed as IMFs, as per the Korean standards. A total of 14 finite element models were constructed with the consideration of two types (single- and double-sided connections) and four levels of skew angle (0°, 10°, 20°, and 30°). The results indicated that the skewed connections considered in this study met the acceptance criteria for IMFs given by the codes. However, the load-carrying capacities of skewed connections were decreased as the skew angle increased. For the connection with a skew angle of 30°, the peak load was noted to be 13% less and the energy dissipation capacity could be 26% less than that of non-skewed connection. In addition, because of the skewed nature, the stress distribution in the skewed beam flange near the connection was asymmetric and the stresses were concentrated on the beam inner flange. Column twisting induced by the skewed configuration was very small and negligible in the beam and column combination considered in this study.

An Experimental Study on the Seismic Performance of Shear Connections and Rib Plate H Beam to Column Connections (전단접합 및 리브 플레이트로 보강한 H형 보-기둥 접합부의 내진성능에 관한 실험적 연구)

  • Oh, Kyung Hyun;Seo, Seong Yeon;Kim, Sung Yong;Yang, Young Sung;Kim, Kyu Suk
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.5 s.78
    • /
    • pp.569-580
    • /
    • 2005
  • The postbeam joint connection of the existing steel structure moment flexible frame system did not produce sufficient seismic resistance during the earthquakes in Northridge and Kobe, and it sustained brittle fracturing on the joint connection. This study was performed to execute the high-tensile bolt share connection of H-beams web and the full-scale experiment as a parameter of the existing reinforcement of H-flange rib, by making the shape of the existing joint connection. This experiment was performed to determine the extent of the decrease of the number of high-tensile bolts and how to improve workability of the two-phase shear connection of web beam. In addition, this study was performed to enhance the seismic resistant capacity through the enforcement of rib plates. As a result of the experiment of two-phase shear connection of H-beam web and of joint connection to be reinforced by rib plates, the results of this study showed that the initial stiffness, energy-dissipation capacity, and rotational capacity of plasticity was higher than the existing joint connection. As to the rate of increasing the strength and deformation capacity, there were differences between the tension side and compression side because of the position of shear tap. However, as a whole, they have shown excellent seismic resistant capacity. Also, all the test subjects exceeded 4% (rate of delamination), about 0.029 rad (total plastic capacity), and about 130% (maximum strength of joint connection) of fully plastic moment for the original section. Accordingly, this study was considered as it would be available in the design more than the intermediate-level of moment flexible frame.

Estimation of R-factor and Seismic Performance for RC IMRFs using N2 Method (N2 Method를 이용한 RC 중간모멘트 연성골조의 반응수정계수 및 내진성능 평가)

  • 윤정배;이철호;최정욱;송진규
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.6
    • /
    • pp.33-39
    • /
    • 2002
  • Response Modification Factor(R-factor) approach is currently implemented to reflect inelastic ductile behavior of the structures and to reduce elastic spectral demands from earthquakes to the design level. However R factors were set empirically and simply based on the professional committee consensus on observed performance of building structures during past earthquakes. Consequently some major shortcomings linked to the current R factor approach have been pointed out. Using reinforced concrete intermediate moment-resisting frames(RC IMRFs), an analytical procedure is presented in this paper to establish R factor rationally. To this end, analytical R values were evaluated based on N2 Method and compared with the values recommended by IBC 2000. Overall, the analytical results correlated well with the code values. However the results also revealed that R factor might strongly depend on the system fundamental period. As evidenced by the interstory drift index(IDI) analysis results of this study, current R-factor based(or, Life Safety based) design tends to fail in fulfilling other implicit and hopeful performance objectives such as immediate Occupancy and Collapse Prevention. Performance based design(PBD) appears to be a promising approach to meet the multi level seismic performance objectives assigned to the building structures of nowadays.