• 제목/요약/키워드: Intermediate Die Design

검색결과 35건 처리시간 0.019초

7XXX계 알루미늄합금 단조재의 파괴인성 개선 (Improvement of Fracture Toughness in 7XXX Series Aluminum Alloy Forings)

  • 송기홍;이오연
    • 열처리공학회지
    • /
    • 제11권3호
    • /
    • pp.200-206
    • /
    • 1998
  • The aim of this study is to investigate the effect of impurity level and fabrication processes on the strength, impact and fracture toughness of 7075, 7050 and 7175 aluminum alloy forgings. A specially processed 7175S-T74 aluminum forgings was superior to a conventionally processed 7075-T73, 7050-T74 and 7175-T74 aluminum forgings in both strength and toughness. The reduction of impurity level of iron and silicon has significantly diminished the size and volume fraction of second phase particles such as $Al_7Cu_2Fe$ and $Mg_2Si$. A further reduction of the amount of second phase particles has been observed by applying a special fabrication process. This phenomena result from the application of intermediate soaking at higher temperature and more sufficiant hot working temperature than that of a conventional processing.

  • PDF

고압콘덴서용 단자핀의 냉간단조 공정설계 (Cold Forging Process Design of a Terminal Pin for High-Voltage Capacitors)

  • 김홍석;윤재웅;송종호;문인석
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 춘계학술대회논문집
    • /
    • pp.210-215
    • /
    • 2003
  • A terminal pin, which is a part of high-voltage capacitors, has a head section of plate-shaped geometry with 0.8 thickness. The current manufacturing process, in which the head section is welded on the body part, has given wide deviations of part qualities such as geometrical accuracy, mechanical strength and electrical stability. In this paper, a cold forging process sequence was designed in order to produce the terminal pin as one piece. The plate-shaped head section requires an upsetting in the lateral direction of a cylindrical billet, which is followed by a blanking process. The deformed geometry of the upsetting, however, could not be predicted precisely by intuition since metal flows of an axial and a lateral direction of the cylindrical billet would occur simultaneously. Therefore, the geometry of the initial billet was determined by three dimensional finite element analysis in order to avoid defects in blanking process and intermediate forging processes were designed by applying design rules and two dimensional FE analysis. In addition, cold forging tryouts were conducted by using the die sets which were manufactured based on the designed process sequence.

  • PDF

대면적 후곡판 성형을 위한 블랭크 지지구조 설계 (Design of Blank Support Structure for Large and Curved Thick Plate Forming)

  • 곽봉석;윤만중;전재영;강범수;구태완
    • 소성∙가공
    • /
    • 제27권1호
    • /
    • pp.18-27
    • /
    • 2018
  • As one of the functional metal parts in steam turbine diaphragm assembly, the hollow-partitioned turbine nozzle (stator) has large and thick geometries, as well as an asymmetric configuration. Therefore it is hard to support a metal blank in the die cavity. To ease this situation and control posture and position of metal blank (workpiece), a blank support structure is newly introduced. The blank support structure is basically composed of enlarged arms from the blank, guide pins and linear bearings. It can help to control the intermediate blank without a critical sliding phenomenon. The operation mechanism of this blank support structure, during thick plate forming for the hollow-partitioned turbine nozzle stator, is first evaluated. A series of FEM-based numerical simulations, with respect to the width of the guide arm as geometric design parameters, are carried out to investigate its applicable range. As the results, it is observed the blank support structure for this thick plate forming can guide the workpiece to have stable posture during the plate forming process.

고압콘덴서용 단자핀의 냉간단조 공정설계에 관한 연구 (A Study on Cold Forging Process Design of a Terminal Pin for High-Voltage Capacitors)

  • 김홍석;윤재웅;손일헌
    • 소성∙가공
    • /
    • 제13권7호
    • /
    • pp.586-593
    • /
    • 2004
  • A terminal pin, which is a part of high-voltage capacitors, has a plate-shaped head section with thickness of 0.8mm. The current manufacturing process, in which the head section is welded on the body part, has given wide deviations of part qualities such as geometrical accuracy, mechanical strength and electrical stability. In this study, a cold forging process sequence was designed in order to produce the terminal pin as one piece. The plate-shaped head section requires an upsetting in the lateral direction of a cylindrical billet, which is followed by a blanking process. The deformed geometry of the lateral upsetting, however, could not be predicted precisely by intuition since metal flows of an axial and a lateral direction of the cylindrical billet would occur simultaneously. Therefore, in this study, three dimensional finite element analyses were applied to the lateral upsetting process in order to determine a proper diameter and height of the cylindrical billet. Once the geometry of the initial billet was determined, intermediate forging processes were designed by applying cold forging guidelines and the designed process sequence was verified by two dimensional finite element analysis. In addition, cold forging tryouts were conducted by using a die set, which was manufactured based on the designed process and finally we found that the part qualities were improved by the proposed cold forging process.

CMOS IF PLL 주파수합성기 설계 (Design of a CMOS IF PLL Frequency Synthesizer)

  • 김유환;권덕기;문요섭;박종태;유종근
    • 대한전자공학회논문지SD
    • /
    • 제40권8호
    • /
    • pp.598-609
    • /
    • 2003
  • 본 논문에서는 CMOS IF PLL 주파수합성기를 설계하였다. 설계된 주파수합성기는 칩 외부에 LC 공진 회로를 원하는 값에 맞게 바꿈으로써 다양한 중간 주파수에서 동작 가능하다. VCO는 자동진폭조절 기능을 갖도록 설계하여 LC 공진회로의 Q-factor에 무관하게 일정한 진폭의 출력을 발생한다. 설계된 주파수분주기는 8/9 또는 16/17 dual-modulus prescaler를 포함하며, 다양한 응용분야에 적용 가능하도록 외부 직렬데이터에 의해 동작 주파수를 프로그램할 수 있도록 하였다. 설계된 회로는 0.35㎛ n-well CMOS 공정을 사용하여 제작되었으며, 제작된 IC의 성능을 측정한 결과 260㎒의 동작주파수에서 위상잡음은 -114dBc/Hz@100kHz 이고 lock time은 300㎲보다 작다. 설계된 회로는 3V의 전원전압에서 16mW의 전력을 소모하며, 칩 면적은 730㎛×950㎛이다.