• Title/Summary/Keyword: Interlocking microstructure

Search Result 13, Processing Time 0.015 seconds

Mechanical Properties of High Strength Cement Composite with Carbon Fiber (탄소섬유 보강 고강도 시멘트 복합체의 기게적 특성에 관한 연구)

  • 전용희;한기성
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.2
    • /
    • pp.139-147
    • /
    • 1993
  • Two sheets of high strength cement paste using ordinary Portland cement and water soluble polymer (polyacrylamide) were made by kneading with a twin roll mill. A carbon fiber layer out between two sheet of the cement paste, and then carbon fiber reinforced high strength cement composites were prepared by pressing them. The mechanical properties of the composites were investigated through the observation of the microstructure and the application of fracture mechanics. When the carbon fiber was added with 0.2 and 0.3wt% to the composites the flexural strength and Young's modulus were about 110∼116MPa and 74∼77GPa respectively, and critical stress intensity was about 3.14MPam1/2. It can be considered that the strength improvement of high strength cement fiber composites may be due to the removal of macropores and the increase of various fracture toughness effects; grain bridging, frictional interlocking, polymer fibril bridging and fiber bridging.

  • PDF

Engineering Characteristics of Diatom Modified Soil Mixture (Diatom 혼합토의 공학적 특성)

  • Kim, Kyu-Sun
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.5
    • /
    • pp.77-84
    • /
    • 2012
  • The engineering characteristics of natural sediments containing diatom microfossils have been investigated for their abnormal deformation and strength behavior for a few decades. The presence of disk or hollow shape diatoms causes low compressibility, high hydraulic conductivity, and high shear strength of sediments. Some of these unusual differences show the characteristic of diatom owing to the interlocking of large interparticle porosity and angular particles. This phenomenon implies the possible use of diatom as modification materials to change the engineering performance of soil mixtures. This paper describes the engineering characteristics of diatom-kaolin mixture to investigate the engineering properties of diatom modified soils using conventional geotechnical tests and elastic and electromagnetic wave propagation tests. Experimental test results show the performance improvement by increasing diatom contents and the performance degradation by the breakage of interlocking between diatom particles under high effective stress.

Research on manufacturing secondary construction products using in-situ carbonation technology (In-situ 탄산화 기술이 적용된 콘크리트 2차제품 제조 연구)

  • Hye-Jin Yu;Sung-Kwan Seo;Woo-Sung Yum
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.6
    • /
    • pp.226-233
    • /
    • 2023
  • In this study, the basic physical properties and microstructure of concrete interlocking blocks with amount of different CO2 gas injection were analyzed according to determine the applicability of In-situ carbonation technology to construction secondary products. The amount of carbon dioxide gas injection was selected as 0, 0.1, 0.3, 0.5, 0.7 wt.% compared to cement amount. A lab-scale press equipment was designed to apply developed carbonation technology to real construction site. And mixer for stable CO2 gas injection was designed. Using the designed devices, CO2 gas injected samples were created and physical property of samples were performed. As a result of the physical property test, as the CO2 injection amount increased to 0.3 %, it showed higher strength behavior compared to the original mix. And more than 0.5 % samples showed lower strength behavior than original sample, but they satisfied the standard of concrete interlocking block. This results were determined that CO2 injection contributed to the creation of hydrates such as C-S-H. Therefore, the possibility of applying carbonation technology, which injects CO2 during mixing, to various secondary construction products was confirmed.