• 제목/요약/키워드: Interleukin-7

검색결과 1,043건 처리시간 0.032초

Functional Properties of Squid By-products Fermented by Probiotic Bacteria

  • Xu, Hua;Gou, Jingyu;Choi, Geun-Pyo;Lee, Hyeon-Yong;Ahn, Ju-Hee
    • Food Science and Biotechnology
    • /
    • 제18권3호
    • /
    • pp.761-765
    • /
    • 2009
  • The effects of probiotic bacteria on the functional properties of squid by-products were investigated during fermentation. Bifidobacterium longum, Lactobacillus acidophilus, Lactobacillus brevis, Lactobacillus casei, Lactobacillus paracasei, Lactobacillus rhamnosus, and Pediococcus acidilactici were used to ferment the squid by-products for 96 hr at $37^{\circ}C$. The numbers of all probiotics increased to $10^7-10^8$ CFU/g after 96 hr fermentation. No substantial pH changes were observed. L. rhamnosus and P. acidilactici showed the highest 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activities. Interleukin-6 (IL-6) and tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$) secreted from B cells increased after adding the extracts of probiotic-fermented squid by-products. The human NK cells were grown well in the B cell-growing broth cultured with the extracts of squid by-products fermented by L. rhamnosus and P. acidilactici. Trimethylamine (TMA) and dimethylamine (DMA) contents were significantly decreased after probiotic-fermentation. Therefore, L. rhamnosus GG and P. acidilactici can be used for the fermentation of squid by-products and their use would provide benefits in functional food products.

Effects of In Vitro Exposure to Silica on Bioactive Mediator Release by Alveolar Macrophages

  • Lee, Ji-Hee
    • The Korean Journal of Physiology
    • /
    • 제29권1호
    • /
    • pp.1-11
    • /
    • 1995
  • Alveolar macrophages play a pivotal role in the pathogenesis of silicosis since the macrophages may release a wide variety of toxic and inflammatory mediators as well as mitogenic growth factors. In the present study, the effects of in vitro exposure to silica on release of various mediator such as reactive oxygen species, platelet activating factor(PAF), and interleukin-1 (IL-1) by alveolar macrophages were examined. First, hydrogen peroxide release from alveolar macrophages was monitored by measuring the change in fluorescence of scopoletin in the absence or presence of graded concentration of silica. Significantly enhanced release of hydrogen peroxide was observed at 0.5 mg/ml and above. A maximal enhancement of 10 fold above control was observed at 5 mg/ml silica. Similarly, in vitro exposure to silica also significantly stimulated the generation of chemiluminescence from alveolar macrophages at 0.5 mg/ml and above with n maximal enhancement of 8 fold at 5 mg/ml silica. Second, PAF release from alveolar macrophages after 30 min incubation at $37^{\circ}C$ in absence or presence of zymosan and silica was determined by measuring $^{3}H-serotonin$ release ability of the conditioned macrophage supernates from platelets. 5 mg/ml zymosan as a positive control fur the PAF assay increased PAF release by 19 % of total serotonin release. Furthermore, silica also resulted in significant enhancement of the PAF release compared with that in unstimulated (control) cells, i.e., $17.7{\pm}5.8%$ and $24.0{\pm}4.9%$ of total serotonin release at 5 mg/ml and 10 mg/ml silica, respectively, which represents the release of nanomole levels of PAF. Lastly, IL-1 production by alveolar macrophages was analysed following their stimulation with lipopolysaccharide (LPS) and silica by their capacity to stimulate thymocyte proliferation. $10\;{\mu}g/ml$ LPS resulted in an 11 fold increase in IL-1 production. In comparison, $50\;{\mu}g/ml$ silica resulted in a 4 fold increase in IL-1 release. These data indicate that in vitro exposure of alveolar macrophages to silica activates the release of various bioactive mediators such as reactive oxygen species, PAF and IL-1 which thus contribute to amplification of inflammatory reactions and regulation of fibrotic responses by the lung after inhalation of silica.

  • PDF

Orobol, A Derivative of Genistein, Inhibits Heat-Killed Propionibacterium acnes-Induced Inflammation in HaCaT Keratinocytes

  • Oh, Yunsil;Hwang, Hwan Ju;Yang, Hee;Kim, Jong Hun;Yoon Park, Jung Han;Kim, Jong-Eun;Lee, Ki Won
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권9호
    • /
    • pp.1379-1386
    • /
    • 2020
  • Acne is a chronic skin disease that typically occurs in the teens and twenties, and its symptoms vary according to age, sex, diet, and lifestyle. The condition is characterized by hyperproliferation of keratinocytes in the epidermis, sebum overproduction, excessive growth of Propionibacterium acnes, and P. acnes-induced skin inflammation. Interleukin (IL)-1α and IL-6 are predominant in the inflammatory lesions of acne vulgaris. These cytokines induce an inflammatory reaction in the skin in the presence of pathogens or stresses. Moreover, IL-1α accelerates the production of keratin 16, which is typically expressed in wounded or aberrant skin, leading to abnormalities in architecture and hyperkeratinization. Orobol (3',4',5,7-tetrahydroxyisoflavone) is a metabolite of genistein that inhibited the P. acnes-induced increases in IL-6 and IL-1α levels in human keratinocytes (HaCaTs) more effectively compared with salicylic acid. In addition, orobol decreased the IL-1α and IL-6 mRNA levels and inhibited the phosphorylation of inhibitor of kappa-B kinase, nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha, and mitogen-activated protein kinase induced by P. acnes. Finally, the expression of Ki67 was decreased by orobol. Thus, orobol ameliorated the inflammation and hyperkeratinization induced by heat-killed P. acnes and thus has potential for use in functional foods and cosmetics.

Increased Cytokine and Nitric Oxide Levels in Serum of Dogs Experimentally Infected with Rangelia vitalii

  • Paim, Francine C.;Da Silvaz, Aleksandro S.;Paim, Carlos Breno V.;Franca, Raqueli T.;Costa, Marcio M.;Duarte, Marta M.M.F.;Sangoi, Manuela B.;Moresco, Rafael N.;Monteiro, Silvia G.;Lopes, Sonia Terezinha A.
    • Parasites, Hosts and Diseases
    • /
    • 제51권1호
    • /
    • pp.133-137
    • /
    • 2013
  • This study aimed to measure the levels of interferon-gamma (IFN-${\gamma}$), tumor necrosis factor-alpha (TNF-${\alpha}$), interleukin 1 (IL-1), interleukin 6 (IL-6), and nitrite/nitrate ($NO_x$) in serum of dogs experimentally infected with Rangelia vitalii. Twelve female mongrel dogs were divided into 2 groups; group A (uninfected controls) composed by healthy dogs (n=5) and group B consisting of dogs inoculated with R. vitalii (n=7). Animals were monitored by blood smear examinations, which showed intraerythrocytic forms of the parasite on day 5 post-infection (PI). Blood samples were collected through the jugular vein on days 0, 10, and 20 PI to determine the serum levels of IFN-${\gamma}$, TNF-${\alpha}$, IL-1, IL-6, and $NO_x$. Cytokines were assessed by ELISA quantitative sandwich technique, and $NO_x$ was measured by the modified Griess method. Cytokine levels (IFN-${\gamma}$, TNF-${\alpha}$, IL-1, and IL-6) were increased (P<0.01) in serum of infected animals. Serum levels of $NO_x$ were also increased on days 10 PI (P<0.01) and 20 PI (P<0.05) in infected animals. Therefore, the infection with R. vitalii causes an increase in proinflammatory cytokines and nitric oxide content. These alterations may be associated with host immune protection against the parasite.

The Membrane-Bound Form of IL-17A Promotes the Growth and Tumorigenicity of Colon Cancer Cells

  • Thi, Van Anh Do;Park, Sang Min;Lee, Hayyoung;Kim, Young Sang
    • Molecules and Cells
    • /
    • 제39권7호
    • /
    • pp.536-542
    • /
    • 2016
  • Interleukin-17A is a member of the IL-17 family, and is known as CTLA8 in the mouse. It is produced by T lymphocytes and NK cells and has proinflammatory roles, inducing cytokine and chemokine production. However, its role in tumor biology remains controversial. We investigated the effects of locally produced IL-17A by transferring the gene encoding it into CT26 colon cancer cells, either in a secretory or a membrane-bound form. Expression of the membrane-bound form on CT26 cells dramatically enhanced their proliferation in vitro. The enhanced growth was shown to be due to an increased rate of cell cycle progression: after synchronizing cells by adding and withdrawing colcemid, the rate of cell cycle progression in the cells expressing the membrane-bound form of IL-17A was much faster than that of the control cells. Both secretory and membrane-bound IL-17A induced the expression of Sca-1 in the cancer cells. When tumor clones were grafted into syngeneic BALB/c mice, the tumor clones expressing the membrane-bound form IL-17A grew rapidly; those expressing the secretory form also grew faster than the wild type CT26 cells, but slower than the clones expressing the membrane-bound form. These results indicate that IL-17A promotes tumorigenicity by enhancing cell cycle progression. This finding should be considered in treating tumors and immune-related diseases.

Bioconversion enhances anti-oxidant and anti-inflammation activities of different parts of the Mulberry Tree (Morus alba L.), especially the leaf (Mori Folium)

  • Chon, So-Hyun;Kim, Min-A;Lee, Han-Saem;Park, Jeong-Eun;Lim, Yu-Mi;Kim, Eun-Jeong;Son, Eun-Kyung;Kim, Sang-Jun;So, Jai-Hyun
    • Journal of Applied Biological Chemistry
    • /
    • 제62권2호
    • /
    • pp.111-122
    • /
    • 2019
  • The mulberry tree (Morus alba L.) has been traditionally used in Chinese medicine to treat inflammatory diseases. We investigated the effects of bioconversion on different components of the mulberry tree, and determined changes in the physiological activities. Ethyl acetate-soluble fractions of five different segments (fruit, Mori Fructus; leaf, Mori Folium; twig, Mori Ramulus; root, Mori Cortex; and mistletoe, Loranthi Ramulus) of the mulberry tree show enhanced anti-oxidant effects in the 2,2-diphenyl-1-picrylhydrazyl, and 2,2'-azinobis-(3-ethylvenzothiazoline-6-sulfonic acid) assays, and enhanced anti-inflammatory effects of lipopolysaccharide (LPS)-stimulated nitric oxide (NO) production in RAW 264.7 macrophages, after being treated with a crude enzyme extract from Aspergillus kawachii, in the following order of activity: Mori Folium>Mori Cortex>Mori Ramulus>Mori Fructus>Loranthi Ramulus. Ethyl acetate- soluble fraction of mulberry leaves (Mori Folium) that underwent bioconversion was most effective, and was devoid of any cytotoxicity. The fraction was also effective against mRNA expression of LPS-induced pro-inflammatory cytokines, such as inducible nitric oxide synthase, cyclooxygenase-2, tumor necrosis $factor-{\alpha}$, $interleukin-1{\beta}$, and interleukin-6. In addition, the fraction was effective in LPS-induced phosphorylation of mitogen-activated protein kinases and IKK, and $I{\kappa}B$ degradation, followed by translocation of the nuclear $factor-{\kappa}B$ from the cytoplasm to the nucleus. Thus, bioconversion increased the anti-oxidative and anti-inflammatory activities of the mulberry leaf.

이미퀴모드로 유발된 건선양 쥐 모델에서 건선 연관 유전자 발현에 대한 면역조직화학적 연구 (Immunohistochemical Study of Psoriasis-related Gene Expression in Imiquimod-induced Psoriasis-like Mouse Model)

  • 김지영;최미라;최종원;박경덕;이영;김창덕;서영준;이증훈
    • 대한피부과학회지
    • /
    • 제56권10호
    • /
    • pp.609-613
    • /
    • 2018
  • Background: Psoriasis is a chronic inflammatory skin disease with an incidence of 0.5~3% of the worldwide population. The pathogenesis of psoriasis is related to dysregulated keratinocyte function and immune reactions. Notably, genetic factors are considered important etiological contributors. Globally, several researchers have recently performed genome-wide association studies (GWAS) to identify the genes related with psoriasis. Objective: We aimed to investigate the expression pattern of 2 candidate genes that were identified by GWAS. These include interleukin 28 receptor alpha (IL28RA) and CUB and Sushi multiple domains 1 (CSMD1). Methods: We applied imiquimod cream to develop a psoriasis-like mouse model and obtained skin tissue. We performed immunohistochemistry to detect the expression of IL-28A and CSMD1. Results: IL28RA expression increased at an early time point such as 1 day after the topical application of 5% imiquimod cream. However, its expression returned to baseline levels 2 weeks after the topical application of imiquimod cream. CSMD1 expression also increased after the topical application of imiquimod, with increased expression particularly observed in the upper epidermal layer. Notably, CSMD1 expression decreased 7 days after imiquimod cream application. Conclusion: These results suggest that IL28RA and CSMD1 may play key roles in the pathogenesis of psoriasis.

Adverse effect of IL-6 on the in vitro maturation of porcine oocytes

  • Yi, Young-Joo;Adikari, Adikari Arachchige Dilki Indrachapa;Moon, Seung-Tae;Heo, Jung-Min;Lee, Sang-Myeong
    • 농업과학연구
    • /
    • 제48권3호
    • /
    • pp.607-615
    • /
    • 2021
  • Cytokines are protein mediators that possess the ability to assist cell-to-cell communication in immune system-related activities. In general, pathogen endotoxins activate the release of inflammatory mediators, and with time, there is an increase in the cytokine levels in the body. Interleukin (IL)-6 mediates the acute-phase inflammatory response, and elevated IL-6 levels have been reported in peritoneal fluids of women with pelvic inflammation and endometriosis, thereby associating it with oocyte quality and infertility. To overcome subfertility or infertility in humans and animals, the present study was done to examine the effect of recombinant IL-6 on porcine oocytes matured in vitro and subsequently to determine the fertilization rate and embryo development. Porcine oocytes were incubated with varying concentrations of IL-6 (0 - 2 ㎍·mL-1) for 44 h followed by in vitro fertilization and culturing of the oocytes. The oocytes or embryos were fixed with 3.7% paraformaldehyde (PFA) and stained with fluorescence dyes, and the meiotic spindle, chromosome organization, fertilization status and embryo development were subsequently assessed under a fluorescence microscope. We observed induction of an abnormal meiotic spindle alignment in the oocytes incubated with IL-6 compared to the control oocytes incubated without IL-6. Moreover, significantly decreased fertilization rates and embryo development were observed for oocytes incubated with IL-6 (p < 0.05). Thus, an increased IL-6 level during oocyte maturation could be associated with fertilization failure due to an aberrant chromosomal alignment and a disruption of the cortical granules. Taken together, our results indicate that successful assisted reproduction can be achieved by controlling the levels of inflammatory cytokines.

Molecular Characteristics and Potent Immunomodulatory Activity of Fasciola hepatica Cystatin

  • Zhang, Kai;Liu, Yucheng;Zhang, Guowu;Wang, Xifeng;Li, Zhiyuan;Shang, Yunxia;Ning, Chengcheng;Ji, Chunhui;Cai, Xuepeng;Xia, Xianzhu;Qiao, Jun;Meng, Qingling
    • Parasites, Hosts and Diseases
    • /
    • 제60권2호
    • /
    • pp.117-126
    • /
    • 2022
  • Cystatin, a cysteine protease inhibitor found in many parasites, plays important roles in immune evasion. This study analyzed the molecular characteristics of a cystatin from Fasciola hepatica (FhCystatin) and expressed recombinant FhCystatin (rFhcystatin) to investigate the immune modulatory effects on lipopolysaccharide-induced proliferation, migration, cytokine secretion, nitric oxide (NO) production, and apoptosis in mouse macrophages. The FhCystatin gene encoded 116 amino acids and contained a conserved cystatin-like domain. rFhCystatin significantly inhibited the activity of cathepsin B. rFhCystatin bound to the surface of mouse RAW264.7 cells, significantly inhibited cell proliferation and promoted apoptosis. Moreover, rFhCystatin inhibited the expression of cellular nitric oxide, interleukin-6, and tumor necrosis factor-α, and promoted the expression of transforming growth factor-β and interleukin-10. These results showed that FhCystatin played an important role in regulating the activity of mouse macrophages. Our findings provide new insights into mechanisms underlying the immune evasion and contribute to the exploration of potential targets for the development of new drug to control F. hepatica infection.

Properties of fermented soybean meal by kefir and its biological function

  • Ra, Seok Han;Renchinkhand, Gereltuya;Kim, Kwang-Yeon;Bae, Hyung Churl;Nam, Myoung Soo
    • 농업과학연구
    • /
    • 제48권1호
    • /
    • pp.21-31
    • /
    • 2021
  • Yeast strains are capable of hydrolyzing non-digestible saccharides, such as melibiose, raffinose, and stachyose, found in soy meal components. This study revealed the biochemical properties of fermented soybean meal during 72 hours with kefir. Starchyose and raffinose, non-digestible components, were almost digested in kefir 150 mL + soybean meal 500 g + water 70 mL and galactose was produced. Proteolysis of the soybean meal produced most of the small molecule peptides in kefir 150 mL + soybean meal 500 g + water 70 mL. The production of the vitamin B group and C were the highest in kefir 250 mL + soybean meal 500 g. The yeast number of the fermented soybean meal was 7.0 × 106 CFU·mL-1 which was the highest in kefir 250 mL + soybean meal 500 g. The lactic acid bacteria of the fermented soybean meal was the highest at 3.5 × 109 CFU·mL-1 in kefir 70 mL + soybean meal 500 g. The antioxidant effect was the highest at 57% in kefir 250 mL + soybean meal 500 g. Expression of inflammation-related cytokine (interleukin [IL]-1β, tumor necrosis factor [TNF]-α, and interleukin [IL]-6) was significantly inhibited in fermented soybean meals with different treatments. These results suggest that fermented soybean meal by kefir has an antiinflammatory and anti-oxidation activity and could be utilized in feed manufacturing, and inhydrolyzing non-digestible soy meal components.