• Title/Summary/Keyword: Interleukin-32

Search Result 156, Processing Time 0.022 seconds

Skin Corrosion and Irritation Test of Nanoparticles Using Reconstructed Three-Dimensional Human Skin Model, EpiDermTM

  • Kim, Hyejin;Choi, Jonghye;Lee, Handule;Park, Juyoung;Yoon, Byung-Il;Jin, Seon Mi;Park, Kwangsik
    • Toxicological Research
    • /
    • v.32 no.4
    • /
    • pp.311-316
    • /
    • 2016
  • Effects of nanoparticles (NPs) on skin corrosion and irritation using three-dimensional human skin models were investigated based on the test guidelines of Organization for Economic Co-operation and Development (OECD TG431 and TG439). EpiDerm$^{TM}$ skin was incubated with NPs including those harboring iron (FeNPs), aluminum oxide (AlNPs), titanium oxide (TNPs), and silver (AgNPs) for a defined time according to the test guidelines. Cell viabilities of EpiDerm$^{TM}$ skins were measured by the 3-(4, 5-dimethylthiazol-2-yl)-2.5-diphenyltetrazolium bromide based method. FeNPs, AlNPs, TNPs, and AgNPs were non-corrosive because the viability was more than 50% after 3 min exposure and more than 15% after 60 min exposure, which are the non-corrosive criteria. All NPs were also non-irritants, based on viability exceeding 50% after 60 min exposure and 42 hr post-incubation. Release of interleukin 1-alpha and histopathological analysis supported the cell viability results. These findings suggest that FeNPs, AlNPs, TNPs, and AgNPs are 'non-corrosive' and 'non-irritant' to human skin by a globally harmonized classification system.

Anti-Inflammatory Effect of Fermented Doenjang Containing a Halophytes Suaeda asparagoides (Miq.) Powder on RAW 264.7 Cells (대식세포에서 나문재 분말을 함유한 된장의 항염증 효과)

  • Gil, Na-Young;Choi, Bo-Young;Yeo, Soo-Hwan;Kim, So-Young
    • The Korean Journal of Food And Nutrition
    • /
    • v.32 no.6
    • /
    • pp.651-661
    • /
    • 2019
  • Suaeda asparagoides (Miq.) is a salt marsh plant, long been prescribed in traditional medicine for the treatment of hypertension and liver toxification in Asian countries. The powder of S. asparagoides was added at the ratio of 0, 5, and 10%, respectively, of grain-type Meju to manufacture Doenjang in brine according to the salt concentration (8 and 12%). After 24 weeks of fermentation, the Doenjang samples were determined to have an anti-inflammatory effect on RAW 264.7 cells. Evaluation of the anti-inflammatory effect of Doenjang added S. asparagoides powder extracted using 80% EtOH, was performed to study the inhibition of pro-inflammatory factors such as NF-κB (nuclar factor κB), NO (nitric oxide), TNF-α (tumor necrosis factor alpha), IL-6 (interleukin-6), iNOS (inducible nitric oxide synthase), and COX-2 (cyclooxygenase-2) in lipopolysaccharide (LPS)-induced RAW 264.7 cells. The results showed that the Doenjang extracts reduced the production of NO, IL-6, COX-2, and iNOS increased in the LPS-stimulated RAW cell without cytotoxicity. In the case of the NF-κB and TNF-α there was no significant difference between the control and samples. In conclusion, these results suggest that Doenjang added with the S. asparagoides powder acts as functional fermented food with anti-inflammation effect.

Compound K Rich Fractions Regulate NF-κB-dependent Inflammatory Responses and Protect Mice from Endotoxin-induced Lethal Shock

  • Yang, Chul-Su;Yuk, Jae-Min;Ko, Sung-Ryong;Cho, Byung-Goo;Sohn, Hyun-Joo;Kim, Young-Sook;Wee, Jae-Joon;Do, Jae-Ho;Jo, Eun-Kyeong
    • Journal of Ginseng Research
    • /
    • v.32 no.4
    • /
    • pp.315-323
    • /
    • 2008
  • In the previous studies, we isolated the compound K rich fractions (CKRF) and showed that CKRF inhibited Toll-like receptor (TLR) 4- or TLR9-induced inflammatory signaling. To extend our previous studies,1) we investigated the molecular mechanisms of CKRF in the TLR4-associated signaling via nuclear factor (NF)-${\kappa}B$, and in vivo role of CKRF for induction of tolerance in lipopolysaccharide (LPS)-induced septic shock. In murine bone marrow-dervied macrophages, CKRF significantly inhibited the induction of mRNA expression of proinflammatory mediators such as tumor necrosis factor-${\alpha}$, interleukin-6, cyclooxygenase-2, and inducible nitric oxide synthase. In addition, CKRF significantly attenuated the transcriptional activities of TLR4/LPS-induced NF-${\kappa}B$. Nuclear translocation of NF-${\kappa}B$ in response to LPS stimulation was significantly abrogated by pre-treatment with CKRF. Furthermore, CKRF inhibited the recruitment of p65 to the interferon-sensitive response element flanking region in response to LPS. Finally, oral administration of CKRF significantly protected mice from Gram-negative bacterial LPS-induced lethal shock and inhibited systemic inflammatory cytokine levels. Together, these results demonstrate that CKRF modulates the TLR4-dependent NF-${\kappa}B$ activation, and suggest a therapeutic role for Gram-negative septic shock.

Inhibition of inflammatory responses elicited by urban fine dust particles in keratinocytes and macrophages by diphlorethohydroxycarmalol isolated from a brown alga Ishige okamurae

  • Fernando, I.P. Shanura;Kim, Hyun-Soo;Sanjeewa, K.K. Asanka;Oh, Jae-Young;Jeon, You-Jin;Lee, Won Woo
    • ALGAE
    • /
    • v.32 no.3
    • /
    • pp.261-273
    • /
    • 2017
  • Fine dust (FD) particles have become a major contributor to air pollution causing detrimental effects on the respiratory system and skin. Although some studies have investigated the effects of FD on the respiratory system, their possible effects on the skin remain under-explored. We investigated the FD mediated inflammatory responses in keratinocytes, present in the outer layers of skin tissues and the transfer of inflammatory potential to macrophages. We further evaluated the anti-inflammatory effects of the polyphenolic derivative, diphlorethohydroxycarmalol (DPHC) isolated from Ishige okamurae against FD-induced inflammation. Size distribution of FD particles was analyzed by scanning electron microscopy. FD particles induced the production of cyclooxygenase-2, prostaglandin E2 ($PGE_2$), interleukin (IL)-$1{\beta}$, and IL-6 in HaCaT keratinocytes and the expression of nitric oxide (NO), inducible nitric oxide synthases (iNOS), $PGE_2$, tumor necrosis factor-${\alpha}$ expression in RAW 264.7 macrophages. Further, we evaluated the inflammatory potential of the culture medium of inflammation-induced HaCaT cells in RAW 264.7 macrophages and observed a marked increase in the expression of NO, iNOS, $PGE_2$, and proinflammatory cytokines. DPHC treatment markedly attenuated the inflammatory responses, indicating its effectiveness in suppressing a broad range of inflammatory responses. It also showed anti-inflammatory potential in in-vivo experiments using FD-stimulated zebrafish embryos by decreasing NO and reactive oxygen species production, while eventing cell death caused by inflammation.

Co-expression of Human Proteins (IL-10, TPO and/or Lactoferrin) into Milk of Cross-Breed Transgenic Mouse

  • Zheng, Zhen-Yu;Lee, Hyo-Sang;Oh, Keon-Bong;Koo, Deog-Bon;Han, Yong-Mahn;Lee, Kyung-Kwang
    • Reproductive and Developmental Biology
    • /
    • v.32 no.1
    • /
    • pp.45-49
    • /
    • 2008
  • We have previously produced transgenic (TG) mice expressing the human lactoferrin (hLF), interleukin-10 (hIL-10), and thrombopoietin (hTPO) proteins in the milk. In this study, we examined whether simple crossbreeding between two kids of a single transgenic mouse can produce double transgenics co-expressing two human proteins.. The hLF male, and the hIL-10 male were crossbred with the hIL-10 and hTPO females, and the hTPO female, respectively. PCR analysis for genotyping showed 32%, 23% and 24% double transgenic rates for hLF/hIL-10, hLF/hTPO, and hIL-10/hTPO transgenes, respectively. We analyzed the expression levels of the human proteins from double transgenic mice and compared those with their single transgenic siblings. All double transgenic co-expressed two human proteins at comparable levels to singles', unless hTPO was not co-expressed: for hLF, 1.1 mg/ml in hLF/hIL-10, whereas 0.5 mg/ml in hLF/hTPO; for hIL-10, 4.1 mg/ml in hIL-10/hLF, whereas 1.4 mg/ml in hIL-10/hTPO. Ihe downregulation of hTPO to half level of singles' was observed in double transgenic mice. The possible reason why hTPO co-expressed might lead to down-regulation of another human protein was discussed. These results suggested that double transgenic generated by crossbreeding between two singles' could be useful system for bioreactor.

Screening and Characterization of Lactobacillus casei MCL Strain Exhibiting Immunomodulation Activity

  • Choi, Jae-Kyoung;Lim, Yea-Seul;Kim, Hee-Jin;Hong, Yeong-Ho;Ryu, Buom-Yong;Kim, Geun-Bae
    • Food Science of Animal Resources
    • /
    • v.32 no.5
    • /
    • pp.635-643
    • /
    • 2012
  • As an appraisal for the application of a new starter culture, more than 200 lactic acid bacteria strains were isolated from raw milk and healthy human feces. The strains showing excellent growth and acid production ability in 10% skim milk media were selected and identified as Lactobacillus casei based on the results of their API carbohydrate fermentation patterns, as well as 16S rDNA sequence analysis. To assess the effect of L. casei strains on irritable bowel disease (IBD), the inhibitory effect of the selected strains against the nitric oxide (NO) production of lipopolysaccharide (LPS)-stimulated RAW 264.7 cells was measured. Among the tested L. casei strains, L. casei MCL was observed to have the greatest NO inhibitory activity. Additionally, L. casei MCL was found to inhibit mRNA expression of pro-inflammatory cytokines (interleukin-$1{\beta}$, IL-6, TNF-${\alpha}$), as well as cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) involved in pathophysiologic processes such as inflammation. The mRNA expression of anti-inflammatory cytokines, including IL-10 and transforming growth factor-$1{\beta}$ (TGF-${\beta}$) of L. casei MCL, was confirmed using quantitative real-time PCR. In conclusion, L. casei MCL showed decreases in the expression of pro-inflammatory cytokines and up-regulated expression of the anti-inflammatory cytokine.

Study of Anti-microbial Activities and Anti-inflammatory Effects of Chamomile (Matricaria chamomilla) Extracts in HaCaT cells (HaCaT 세포주에서 캐모마일 (Matricaria chamomilla) 추출물의 항병원 성 및 항염 효과에 관한 연구)

  • Lim, Eun Gyeong;Kim, Guen Tae;Kim, Bo Min;Kim, Eun Ji;Kim, Sang-Yong;Han, Nam Kyu;Ha, Jae Sun;Kim, Young Min
    • KSBB Journal
    • /
    • v.32 no.1
    • /
    • pp.9-15
    • /
    • 2017
  • Chamomile (Matricaria chamomilla), a member of the Asteraceae family, is a well-known for medicinal plant and can be found in India and Europe. Chamomile is an effective sedative and various medical effects. But, the effects of acne treatment by chamomile were not investigated. Therefore, we assessed the anti-oxidant effects, anti-microbial activity and anti-inflammatory effects by chamomile extracts in HaCaT keratinocyte cells. Anti-oxidant effects of chamomile extracts were investigated by DPPH assay. Also, results of MTT assay was demonstrated that chamomile extracts did not have a cytotoxic effect in HaCaT cells. To assess the antimicrobial activity, we determined formation of inhibition zone of Propionibacterium acnes by extracts from chamomile. Tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) induces production of inflammatory cytokines such as interleukin-$1{\beta}$ (IL-$1{\beta}$), IL-6 and IL-8 and expression of COX-2. Chamomile extracts could inhibit TNF-${\alpha}$-induced mRNA expression levels of IL-$1{\beta}$, IL-6, IL-8 and COX-2 gene. These results demonstrated the possibility of chamomile for prevention and treatment of skin inflammatory diseases such as acne.

Effects of Achyranthis Japonicae Radix-containing mixture on monosodium iodoacetate-induced osteoarthritis in rats (우슬(牛膝) 등 복합 추출물의 monosodium iodoacetate로 유발한 흰쥐 골관절염에 대한 효과)

  • Kim, Myung-Gyou;Seo, Il-Bok;Leem, Kang-Hyun;Jeong, Taejin;Kim, Jinseok
    • The Korea Journal of Herbology
    • /
    • v.32 no.1
    • /
    • pp.83-89
    • /
    • 2017
  • Objectives : The present study was designed to determine the effects of mixture of Achyranthis Japonicae Radix, Scutellariae Radix, and Acanthopanacis Cortex on monosodium iodoacetate (MIA)-induced osteoarthritis in rats. The mixture was composed of Achyranthis Japonicae Radix, Scutellariae Radix, and Acanthopanacis Cortex extracts. Methods : Arthritis was induced by injection of MIA into knee joints of rats. At the end of experiment, gross examination on the articular structures of knee joints were performed. Proteoglycan (PG) contents in articular cartilages were analysed as well. Tumor necrosis $factor-{\alpha}$($TNF-{\alpha}$) and $interleukin-1{\beta}$ ($IL-1{\beta}$) contents in synovial fluids were measured by ELISA method and matrix metalloproteinase 2 (MMP2), MMP9, and tissue inhibitors of metalloproteinase 1 (TIMP1) mRNA were measured by a realtime PCR. Results : The surfaces of the articular cartilage were observed. The severity of osteoarthritis in the treated group were alleviated compared with control group. PG contents in articular cartilages of the treated group were increased compared with control group. $IL-1{\beta}$ contents in synovial fluids of the treated group were significantly decreased compared with control group. MMP2 and MMP9 mRNA contents in articular cartilages were significantly decreased compared with control group and TIMP1 mRNA contents were increased compared with control group. Conclusions : On the basis of these results, we concluded that Achyranthis Japonicae Radix-containing mixture treatment has anti-arthritic effects on the MIA-induced osteoarthritis in rats. And the effects were related with the reduction of $IL-1{\beta}$ in synovial membranes and the consequent reduction of MMP2 and MMP9 expressions.

The Effects of Orally Administrated Gwakhyangjeonggi-san on DNCB-induced Atopic Dermatitis like Mice Model (DNCB로 유발된 아토피 피부염 동물 모델에 대한 곽향정기산(藿香正氣散) 경구투여의 효과)

  • Son, Mi-Ju;Lee, So-Min;Park, Seong-Hwan;Kim, Young-Eun;Jung, Jee-Youn
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.32 no.2
    • /
    • pp.94-106
    • /
    • 2019
  • Objectives : This study was conducted to investigate the effects of Gwakhyangjeonggi-san(GJS) on atopic dermatitis(AD) induced by 2,4-dinitrochlorobenzene(DNCB) in mice. Methods : The mice(Balb/c mice) were divided into three groups; normal Balb/c mice with oil treatment(Sham group), DNCB-induced AD mice(AD group), and GJS treated AD mice(GJS group). GJS group were orally administered GJS daily for 2 weeks. We observed changes of clinical skin severity score, the expression of thymic stromal lymphopoietin(TSLP), interleukin(IL)-4 and tumor necrosis factor(TNF)-${\alpha}$ in skin and mast cell infiltration. Also, serum immunoglobulinE(IgE), IL-4, $TNF-{\alpha}$ and IL-6 were evaluated. Results : The clinical skin severity score of GJS group was decreased compared to AD group. In hematoxylin and eosin staining results, GJS group showed a significant reduction of epithelial skin thickness. In addition, expression of TSLP and mast cell infiltration in skin were also reduced by GJS treatment compared to those of AD group. Thus, we evaluated expression of IL-4, Th2-dependent cytokine, and $TNF-{\alpha}$, pro-inflammatory cytokine in skin. GJS significantly reduced both IL-4 and $TNF-{\alpha}$ compared to AD mice. Moreover, levels of IgE, IL-4, $TNF-{\alpha}$ and IL-6 in plasma also significantly decreased by oral GJS treatment. Conclusion : The present study suggests that GJS can significantly reduced symptoms of AD, therefore it can be a promising candidate for anti-atopic dermatitis treatment.

Anti-inflammatory Effects of Cheongsimyanggyeok-san via NF-𝜅B Inhibition (NF-𝜅B억제를 통한 청심양격산(淸心凉膈散)의 항염증 효과)

  • Kim, Nan-Ee;Kim, Yeon-Soo;Jee, Seon-Young;Hwangbo, Min
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.32 no.2
    • /
    • pp.11-23
    • /
    • 2019
  • Objectives : The purpose of this study is to investigate the anti-inflammatory effect of Cheongsimyanggyeoksan(CYS) water extract in vitro and in vivo. Methods : To evaluate the anti-inflammatory effect of CYS, Raw 264.7 cells were pretreated with $3-300{\mu}g/m{\ell}$ of CYS for 1h, and then exposed to $1{\mu}g/m{\ell}$ of LPS. The cell viability was detected by MTT assay. Productions of nitric oxide(NO) and pro-inflammatory cytokines were measured in culture media. Protein levels of inducible nitric oxide synthase(iNOS) and Nuclear factor-${\kappa}$B($NF-{\kappa}B$) were determined by immunoblot analysis. The effect of CYS on acute inflammation in vivo was evaluated thorugh measurment of carrageenan-induced paw edema. Results : In vitro study, cell viability assay CYS treatment of $3-300{\mu}g/m{\ell}$ has no cytotoxicity in Raw 264.7 cells. LPS-induced NO production was significantly inhibited by pretreatment with $30-300{\mu}g/m{\ell}$ of CYS. Production of interleukin-6, -$1{\beta}$ and tumor necrosis factor-${\alpha}$ by LPS were significantly decreased by CYS pretreatment. CYS reduced LPS-mediated iNOS expression. Moreover, CYS significantly induced $I-{\kappa}B{\alpha}$ expression and reduced $NF-{\kappa}B$ expression. In vivo study, CYS significantly reduced the increases of paw swelling. Conclusions : These results suggest the clinical basis of CYS for the treatment of inflammatory diseases.