• Title/Summary/Keyword: Interleukin (IL)-10

Search Result 1,809, Processing Time 0.024 seconds

CBT-SL5, a Bacteriocin from Enterococcus faecalis, Suppresses the Expression of Interleukin-8 Induced by Propionibacterium acnes in Cultured Human Keratinocytes

  • Lee, Ye-Jin;Choi, Hye-Jeong;Kang, Tae-Wook;Kim, Hyung-Ok;Chun, Myung-Jun;Park, Young-Min
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.7
    • /
    • pp.1308-1316
    • /
    • 2008
  • Propionibacterium acnes is known to playa pivotal role in the pathogenesis of acne vulgaris. CBT-SL5 is one of the antimicrobial peptides from Enterococcus faecalis SL5, and it has shown antimicrobial activity against P. acnes. The aim of this study was to investigate the anti-inflammatory effect of CBT-SL5 on the inflammation induced by P. acnes in cultured human keratinocyes. Cultured human keratinocytes derived from neonatal foreskin were treated with heat-killed P. acnes to induce inflammation, and then various concentrations of CBT-SL5 were added to the P. acnes-treated keratinocytes. The mRNA expression and protein secretion of interleukin (IL)-8, an inflammation marker, was analyzed by real-time reverse transcription polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. We also analyzed the nuclear factor-kappa B (NF-$\kappaB$) p65 translocation by performing immunofluorescent staining. P. acnes treatment up regulated the IL-8 mRNA expression in the keratinocytes, and this was brought about through both toll-like receptor (TLR)2 and TLR4. At the concentrations of 10, 50, and 100 ng/ml, CBT-SL5 significantly down regulated the P. acnes-induced IL-8 mRNA expression and protein production (p<0.05). At 6 hand 12 h of the treatment, CBT-SL5 significantly suppressed the P. acnes-induced IL-8 mRNA expression. Secretion of IL-8 protein was significantly reduced at 24 h. The functional inhibitory activity of CBT-SL5 was shown by CBT-SL5 suppressing the P. acnes-induced NF-$\kappaB$ translocation from the cytoplasm to the nucleus. These results demonstrated that CBT-SL5 suppressed the P. acnes-induced IL-8 expression in keratinocytes. Therefore, CBT-SL5 may be a novel anti-inflammatory treatment for acne.

IL-17A Secreted by Th17 Cells Is Essential for the Host against Streptococcus agalactiae Infections

  • Chen, Jing;Yang, Siyu;Li, Wanyu;Yu, Wei;Fan, Zhaowei;Wang, Mengyao;Feng, Zhenyue;Tong, Chunyu;Song, Baifen;Ma, Jinzhu;Cui, Yudong
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.5
    • /
    • pp.667-675
    • /
    • 2021
  • Streptococcus agalactiae is an important bacterial pathogen and causative agent of diseases including neonatal sepsis and meningitis, as well as infections in healthy adults and pregnant women. Although antibiotic treatments effectively relieve symptoms, the emergence and transmission of multidrug-resistant strains indicate the need for an effective immunotherapy. Effector T helper (Th) 17 cells are a relatively newly discovered subpopulation of helper CD4+ T lymphocytes, and which, by expressing interleukin (IL)-17A, play crucial roles in host defenses against a variety of pathogens, including bacteria and viruses. However, whether S. agalactiae infection can induce the differentiation of CD4+ T cells into Th17 cells, and whether IL-17A can play an effective role against S. agalactiae infections, are still unclear. In this study, we analyzed the responses of CD4+ T cells and their defensive effects after S. agalactiae infection. The results showed that S. agalactiae infection induces not only the formation of Th1 cells expressing interferon (IFN)-γ, but also the differentiation of mouse splenic CD4+ T cells into Th17 cells, which highly express IL-17A. In addition, the bacterial load of S. agalactiae was significantly increased and decreased in organs as determined by antibody neutralization and IL-17A addition experiments, respectively. The results confirmed that IL-17A is required by the host to defend against S. agalactiae and that it plays an important role in effectively eliminating S. agalactiae. Our findings therefore prompt us to adopt effective methods to regulate the expression of IL-17A as a potent strategy for the prevention and treatment of S. agalactiae infection.

Tissue Expression, Serum and Salivary Levels of IL-10 in Patients with Head and Neck Squamous Cell Carcinoma

  • Hamzavi, Marzieh;Tadbir, Azadeh Andisheh;Rezvani, Gita;Ashraf, Mohammad Javad;Fattahi, Mohammad Javad;Khademi, Bijan;Sardari, Yasaman;Jeirudi, Naghmeh
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.3
    • /
    • pp.1681-1685
    • /
    • 2013
  • Background: Head and neck SCC is a common cancer related to various factors. IL-10, a pleiotropic cytokine produced by macrophages, T-helper-2 cells, and B lymphocytes, is thought to play a potential pathogenetic or therapeutic role in a number of human conditions, such as inflammation, autoimmunity and cancer. The present study was designed to evaluate the relation between tissue expression, serum and salivary levels of IL-10 in head and neck squamous cell carcinomas (HNSCCs) and their correlation with clinicopathologic features. Materials and Methods: Samples were collected from 30 patients with HNSCCs and 24 healthy volunteers. IHC analysis was used to examine the tissue expression and ELISA was employed to measure serum and salivary levels. Results: Our study showed tissue expression of IL-10 to be significantily higher in patients (P: 0.001), but there was no relation between tissue expression, serum and salivary levels of the marker (P>0.05). Also except for a positive correlation between tissue expression of IL-10 and stage (P: 0.044), there was no relation between this marker and clinicopathologic features. There was no correlation between serum and salivary levels in either patients or controls. Conclusions: It seems there is no correlation between level of IL-10 in serum and saliva and this marker in saliva and serum does not reflect tissue expression.

Peptide H Reduces IL-6 Expression in Human Breast Cancer MDA-MB-231 Cells (인간 유방암 MDA-MB-231 세포에서 Peptide H에 의한 IL-6 발현 억제효과)

  • Sung, Dae Il;Park, Jameon;Kim, Han Bok
    • Korean Journal of Microbiology
    • /
    • v.50 no.3
    • /
    • pp.261-263
    • /
    • 2014
  • Chronic inflammation is involved in cancers, rheumatoid arthritis, and Crohn's disease. Inerleukin-6 (IL-6) plays major roles in inflammation. Chungkookjang, fermented soybean contains diverse peptides produced by cleavage of soybean proteins. The peptides can be bioactive compounds. Peptide (Gly-Val-Tyr-Tyr-Met-Tyr was purified from Chungkookjang, and modified to be 6mer H, Glu-Val-Tyr-Tyr-Met-Tyr (EVYYMY). Peptide H's activity to suppress IL-6 expression in a human breast cancer cell, MDA-MB-231 was determined. IL-6 Expression was reduced in the cell treated with peptide H 25 times less than controls which were not treated with peptide H. Proliferation of MDA-MB-231 cells was inhibited by peptide H, which is concentration-dependent. Blocking of IL-6 signals is known to be effective in reducing inflammation in rheumatoid arthritis, Crohn's disease, and cancers. Since peptide H can reduce inflammatory IL-6 expression, application of this study will contribute to drug development for diseases which are caused by excessive IL-6.

Tumor Cell Clone Expressing the Membrane-bound Form of IL-12p35 Subunit Stimulates Antitumor Immune Responses Dominated by $CD8^+$ T Cells

  • Lim, Hoyong;Do, Seon Ah;Park, Sang Min;Kim, Young Sang
    • IMMUNE NETWORK
    • /
    • v.13 no.2
    • /
    • pp.63-69
    • /
    • 2013
  • IL-12 is a secretory heterodimeric cytokine composed of p35 and p40 subunits. IL-12 p35 and p40 subunits are sometimes produced as monomers or homodimers. IL-12 is also produced as a membrane-bound form in some cases. In this study, we hypothesized that the membrane-bound form of IL-12 subunits may function as a costimulatory signal for selective activation of TAA-specific CTL through direct priming without involving antigen presenting cells and helper T cells. MethA fibrosarcoma cells were transfected with expression vectors of membrane-bound form of IL-12p35 (mbIL-12p35) or IL-12p40 subunit (mbIL-12p40) and were selected under G418-containing medium. The tumor cell clones were analyzed for the expression of mbIL-12p35 or p40 subunit and for their stimulatory effects on macrophages. The responsible T-cell subpopulation for antitumor activity of mbIL-12p35 expressing tumor clone was also analyzed in T cell subset-depleted mice. Expression of transfected membranebound form of IL-12 subunits was stable during more than 3 months of in vitro culture, and the chimeric molecules were not released into culture supernatants. Neither the mbIL-12p35-expressing tumor clones nor mbIL-12p40-expressing tumor clones activated macrophages to secrete TNF-${\alpha}$. Growth of mbIL-12p35-expressing tumor clones was more accelerated in the $CD8^+$ T cell-depleted mice than in $CD4^+$ T cell-depleted or normal mice. These results suggest that $CD8^+$ T cells could be responsible for the rejection of mbIL-12p35-expressing tumor clone, which may bypass activation of antigen presenting cells and $CD4^+$ helper T cells.

The effects of pear phenolic compound and herbal drugs on tension of the tracheal smooth muscle, eosinophil and interleukin-4 in mouse model of allergic bronchial asthma induced by ovalbumin (배(리(梨)) 추출 Phenolic Compound 및 길경(桔梗) 행인(杏仁) 배합 투여가 Ovalbumin으로 유발된 천식 동물 모델에서 기관지 평활근 장력, 호산구 및 IL-4에 미치는 영향)

  • Jeong, Jong-Gil;Youn, Dae-Hwan;Na, Chang-Su
    • The Korea Journal of Herbology
    • /
    • v.22 no.2
    • /
    • pp.25-33
    • /
    • 2007
  • Objectives : Oriental pear was used as treatment of asthma, control of blood pressure, diabetes in oriental medicine. The aim of this study was to observe the effects of Phenolic compound extracted from pear and herbal drugs to treat asthma. Methods : In order to study the effect of oral administration of phenolic compound extracted from pear and herbal drugs(Platycodon grandiflorum, Prunus armeniaca) on allergic asthma, mice were pre-treated by oral administration of the solution before antigen sensitization four times for 8 days. 2 days later, mice were actively sensitized with a subcutaneous injection of ovalbumin and 13 days later, they were provoked with ovalbumin aerosols. The animals were divided into four groups; Saline, orally administered saline. PC-A, orally administered Phenolic compound extracted from pear peel 10mg/kg/ml. PC-B, orally administered Phenolic compound extracted from pear peel and flesh 10mg/kg/ml. PC-C, orally administered pear 10m/kg/ml, Platycodon grandiflorum 24.4 mg/kg/ml and Prunus armeniaca 33.3 mg/kg/ml. Serum level of IgE, IL-4, cell numbers in the bronchoalveolar lavage fluid(BALF), and in vitro isometric contractile responses of the isolated tracheal smooth muscle(TSM) to acetylcholine(ACh, $0.1-1000{\mu}M$), KCl were measured. Results : Contractile responses of TSM to ACh were decreased in PC-A group at Ach 0.1, 0.3, 1 ${\mu}M$, decreased in PC-B at 0.1 ${\mu}M$ and decreased in PC-C at 0.1, 0.3, 1, 10, 30 ${\mu}M$. The maximal contractile response of TSM to KCl was decreased in PC-C group, The cell numbers of eosinophil in BALF were decreased in PC-C group, and those of macrophages in BALF were decreased in PC-A and PC-C group. Interleukin-4 in BALF was decreased in PC-A, PC-B, PC-C group. Conclusion : Based on the above results it is assumed that oral administration of phenolic compound extracted from pear and herbal drugs can help the treatment of deficiency allergic Asthma.

  • PDF

ⳑ-Methionine inhibits 4-hydroxy-2-nonenal accumulation and suppresses inflammation in growing rats

  • Zhengxuan, Wang;Mingcai, Liang;Hui, Li;Bingxiao, Liu;Lin, Yang
    • Nutrition Research and Practice
    • /
    • v.16 no.6
    • /
    • pp.729-744
    • /
    • 2022
  • BACKGROUND/OBJECTIVES: 4-Hydroxy-2-nonenal (HNE) is a biomarker for oxidative stress to induce inflammation. Methionine is an essential sulfur-containing amino acid with antioxidative activity. On the other hand, the evidence on whether and how methionine can depress HNE-derived inflammation is lacking. In particular, the link between the regulation of the nuclear factor-κB (NF-κB) signaling pathway and methionine intake is unclear. This study examined the link between depression from HNE accumulation and the anti-inflammatory function of ⳑ-methionine in rats. MATERIALS/METHODS: Male Wistar rats (3-week-old, weighing 70-80 g) were administered different levels of ⳑ-methionine orally at 215.0, 268.8, 322.5, and 430.0 mg/kg body weight for two weeks. The control group was fed commercial pellets. The hepatic HNE contents and the protein expression and mRNA levels of the inflammatory mediators were measured. The interleukin-10 (IL-10) and glutathione S-transferase (GST) levels were also estimated. RESULTS: Compared to the control group, hepatic HNE levels were reduced significantly in all groups fed ⳑ-methionine, which were attributed to the stimulation of GST by ⳑ-methionine. With decreasing HNE levels, ⳑ-methionine inhibited the activation of NF-κB by up-regulating inhibitory κBα and depressing phosphoinositide 3 kinase/protein kinase B. The mRNA levels of the inflammatory mediators (cyclooxygenase-2, interleukin-1β, interleukin-6, inducible nitric oxide synthase, tumor necrotic factor alpha) were decreased significantly by ⳑ-methionine. In contrast, the protein expression of these inflammatory mediators was effectively down regulated by ⳑ-methionine. The anti-inflammatory action of ⳑ-methionine was also reflected by the up-regulation of IL-10. CONCLUSIONS: This study revealed a link between the inhibition of HNE accumulation and the depression of inflammation in growing rats, which was attributed to ⳑ-methionine availability. The anti-inflammatory mechanism exerted by ⳑ-methionine was to inhibit NF-κB activation and to up-regulate GST.

Anti-bacterial effects of enzymatically-isolated sialic acid from glycomacropeptide in a Helicobacter pylori-infected murine model

  • Noh, Hye-Ji;Koh, Hong Bum;Kim, Hee-Kyoung;Cho, Hyang Hyun;Lee, Jeongmin
    • Nutrition Research and Practice
    • /
    • v.11 no.1
    • /
    • pp.11-16
    • /
    • 2017
  • BACKGROUND/OBJECTIVES: Helicobacter pylori (H. pylori) colonization of the stomach mucosa and duodenum is the major cause of acute and chronic gastroduodenal pathology in humans. Efforts to find effective anti-bacterial strategies against H. pylori for the non-antibiotic control of H. pylori infection are urgently required. In this study, we used whey to prepare glycomacropeptide (GMP), from which sialic acid (G-SA) was enzymatically isolated. We investigated the anti-bacterial effects of G-SA against H. pylori in vitro and in an H. pylori-infected murine model. MATERIALS/METHODS: The anti-bacterial activity of G-SA was measured in vitro using the macrodilution method, and interleukin-8 (IL-8) production was measured in H. pylori and AGS cell co-cultures by ELISA. For in vivo study, G-SA 5 g/kg body weight (bw)/day and H. pylori were administered to mice three times over one week. After one week, G-SA 5 g/kg bw/day alone was administered every day for one week. Tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), IL-$1{\beta}$, IL-6, and IL-10 levels were measured by ELISA to determine the anti-inflammatory effects of G-SA. In addition, real-time PCR was performed to measure the genetic expression of cytotoxin-associated gene A (cagA). RESULTS: G-SA inhibited the growth of H. pylori and suppressed IL-8 production in H. pylori and in AGS cell co-cultures in vitro. In the in vivo assay, administration of G-SA reduced levels of IL-$1{\beta}$ and IL-6 pro-inflammatory cytokines whereas IL-10 level increased. Also, G-SA suppressed the expression of cagA in the stomach of H. pylori-infected mice. CONCLUSION: G-SA possesses anti-H. pylori activity as well as an anti-H. pylori-induced gastric inflammatory effect in an experimental H. pylori-infected murine model. G-SA has potential as an alternative to antibiotics for the prevention of H. pylori infection and H. pylori-induced gastric disease prevention.

Serum Levels of Type 2 Chemokines in Lepromatous Leprosy Patients

  • Lew, Wook;Nakamura, Koichiro;Tada, Yayoi;Kwahck, Ho;Chang, Soo Kyoung;Tamaki, Kunihiko
    • IMMUNE NETWORK
    • /
    • v.2 no.4
    • /
    • pp.223-226
    • /
    • 2002
  • Background: The type 2 deviated immunological state is predominant in lepromatous leprosy. Erythema nodosum leprosum (ENL) is an immune-complex mediated reaction that typically occurs in lepromatous leprosy. To date, the serum levels of tumor necrosis factor (TNF)-${\alpha}$, interleukin (IL)-2 receptor, IL-10, IL-$1{\beta}$, IL-1 receptor antagonist and monocyte chemoattractant protein-1 (MCP-1) were reported to be higher in lepromatous leprosy. TNF-${\alpha}$ is also known to be higher in ENL, which is reduced after thalidomide treatment. However the serum type 2 chemokine levels in lepromatous leprosy patients have not been reported. Methods: The serum levels of the type 2 chemokines such as thymus and activation-regulated chemokine (TARC), macrophage-derived chemokine (MDC) and eotaxin together with IL-12 and IL-10 in the sera from leprosy patients were detected using an enzyme-linked solvent assay (ELISA) method. Results: The Serum TARC, MDC, eotaxin, IL-10 and IL-12 levels in lepromatous leprosy patients were not significantly different from the normal control levels. The serum levels were not significantly different between the paucibacillary group and multibacillary group. The serum TARC or MDC levels in the ENL patients were more reduced after a treatment containing thalidomide. Conclusion: The type 2 chemokines are not related to the severity of lepromatous leprosy. The larger reducing effect of the TARC or MDC levels in ENL patients by a treatment containing thalidomide suggests the potential role of these chemokines in the development of ENL and the therapeutic mechanism of thalidomide.

Codelivery of IL-7 Augments Multigenic HCV DNA Vaccine-induced Antibody as well as Broad T Cell Responses in Cynomolgus Monkeys

  • Park, Su-Hyung;Song, Mi-Young;Nam, Hyo-Jung;Im, Se-Jin;Sung, Young-Chul
    • IMMUNE NETWORK
    • /
    • v.10 no.6
    • /
    • pp.198-205
    • /
    • 2010
  • Background: A crucial limitation of DNA vaccines is its weak immunogenicity, especially in terms of eliciting antibody responses in non-human primates or humans; therefore, it is essential to enhance immune responses to vaccination for the development of successful DNA vaccines for humans. Methods: Here, we approached this issue by evaluating interleukin-7 (IL-7) as a genetic adjuvant in cynomolgus monkeys immunized with multigenic HCV DNA vaccine. Results: Codelivery of human IL-7 (hIL-7)-encoding DNA appeared to increase DNA vaccine-induced antibody responses specific for HCV E2 protein, which plays a critical role in protecting from HCV infection. HCV-specific T cell responses were also significantly enhanced by codelivery of hIL-7 DNA. Interestingly, the augmentation of T cell responses by codelivery of hIL-7 DNA was shown to be due to the enhancement of both the breadth and magnitude of immune responses against dominant and subdominant epitopes. Conclusion: Taken together, these findings suggest that the hIL-7-expressing plasmid serves as a promising vaccine adjuvant capable of eliciting enhanced vaccine-induced antibody and broad T cell responses.