• Title/Summary/Keyword: Interlayer coupling

Search Result 68, Processing Time 0.043 seconds

Vibration characteristic analysis of high-speed railway simply supported beam bridge-track structure system

  • Jiang, Lizhong;Feng, Yulin;Zhou, Wangbao;He, Binbin
    • Steel and Composite Structures
    • /
    • v.31 no.6
    • /
    • pp.591-600
    • /
    • 2019
  • Based on the energy-variational principle, a coupling vibration analysis model of high-speed railway simply supported beam bridge-track structure system (HSRBTS) was established by considering the effect of shear deformation. The vibration differential equation and natural boundary conditions of HSRBTS were derived by considering the interlayer slip effect. Then, an analytic calculation method for the natural vibration frequency of this system was obtained. By taking two simply supported beam bridges of high-speed railway of 24 m and 32 m in span as examples, ANSYS and MIDAS finite-element numerical calculation methods were compared with the analytic method established in this paper. The calculation results show that two of them agree well with each other, validating the analytic method reported in this paper. The analytic method established in this study was used to evaluate the natural vibration characteristics of HSRBTS under different interlayer stiffness and length of rails at different subgrade sections. The results show that the vertical interlayer compressive stiffness had a great influence on the high-order natural vibration frequency of HSRBTS, and the effect of longitudinal interlayer slip stiffness on the natural vibration frequency of HSRBTS could be ignored. Under different vertical interlayer stiffness conditions, the subgrade section of HSRBTS has a critical rail length, and the critical length of rail at subgrade section decreases with the increase in vertical interlayer compressive stiffness.

Effect of Magnetic Property Modification on Current-Induced Magnetization Switching with Perpendicular Magnetic Layers and Polarization-Enhancement Layers

  • Kim, Woo-Jin;Lee, Kyung-Jin;Lee, Taek-Dong
    • Journal of Magnetics
    • /
    • v.14 no.3
    • /
    • pp.104-107
    • /
    • 2009
  • The effects of the magnetic property variation on current-induced magnetization switching in magnetic tunnel junction with perpendicular magnetic anistoropy (PMA) and the soft magnetic polarization-enhancement layers (PELs) inserted between the layers with PMA and the MgO layer was studied. A micromatnetic model was used to estimate the switching time of the free layer by different applied current densities, with changing saturation magnetization ($M_s$) of the PELs, interlayer exchange coupling between PMA layers and PELs. The switching time could be significantly reduced at low current densities, by increasing $M_s$ of PELs and decreasing interlayer exchange coupling.

Tunable Interlayer Exchange Coupling Energy (조절 가능한 층간교환상호작용에 관한 연구)

  • Ha, Seung-Seok;You, Chun-Yeol
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.2
    • /
    • pp.130-135
    • /
    • 2006
  • We theoretically demonstrate that the interlayer exchange coupling (IEC) energy can be manipulated by means of an external bias voltage in a $F_1/NM/F_2/S$$(F_1:ferromagnetic,\;NM:nonmagnetic\;metallic,\;F_2:ferromagnetic,\;S:semiconductor\;layers)$ four-layer system. It is well known that the IEC energy between two ferromagnetic layers separated by nanometer thick nonmagnetic layer depends on the spin-dependence of reflectivity to the $F_1/NM/F_2/S$ four-layer system, where the reflectivities at the interface in $NM/F_2$ interface also depends on $F_2/S$ interface due to the multiple reflection of an electron-like optics. Finally, the IEC energy depends on the spin-dependent electron reflectivity not only at the interfaces of $F_1/NM/F_2$, but also at the interface of $F_2/S$. Naturally the Schottky barrier is formed at the interface between metallic ferromagnetic layer and semiconductor, the Schottky barrier height and thickness can be tailored by an external bias voltage, which causes the change of the spin-dependent reflectivity at $F_2/S$ interface. We show that the IEC energy between two ferromagnetic layers can be controlled by an external bias voltage due ti the electron-optics nature using a simple free-electron-like one-dimensional model.

A Study on Microfailure Mechanism of Single-Fiber Composites using Tensile/Compressive Broutman Fragmentation Techniques and Acoustic Emission (인장/압축 Broutman Fragmentation시험법과 음향방출을 이용한 단섬유 복합재료의 미세파괴 메커니즘의 연구)

  • Park, Joung-Man;Kim, Jin-Won;Yoon, Dong-Jin
    • Composites Research
    • /
    • v.13 no.4
    • /
    • pp.54-66
    • /
    • 2000
  • Interfacial and microfailure properties of carbon fiber/epoxy matrix composites were evaluated using both tensile fragmentation and compressive Broutman tests with an aid of acoustic emission (AE) monitoring. A polymeric maleic anhydride coupling agent and a monomeric amino-silane coupling agent were used via the electrodeposition (ED) and the dipping applications, respectively. Both coupling agents exhibited significant improvements in interfacial shear strength (IFSS) compared to the untreated case under tensile and compressive tests. The typical microfailure modes including fiber break of cone-shape, matrix cracking, and partial interlayer failure were observed during tensile test, whereas the diagonal slippage in fiber ends was observed under compressive test. For both loading types, fiber breaks occurred around just before and after yielding point. In both the untreated and treated cases AE amplitudes were separately distributed for the tensile testing, whereas they were closely distributed for the compressive tests. It is because of the difference in failure energies of carbon fiber between tensile and compressive loading. The maximum AE voltage for the waveform of carbon or basalt fiber breakages under tensile tests exhibited much larger than those under compressive tests, which can provide the difference in the failure energy of the individual failure processes.

  • PDF

Junction Size Dependence of Magnetic and Magnetotransport Properties in MTJs (자기터널절합에서 자기 및 자기저항의 접합크기 의존성)

  • Sankaranarayanan, V.K.;Hu, Yong-kang;Kim, Cheol-Gi;Kim, Chong-Oh;Lee, Hee-bok
    • Korean Journal of Materials Research
    • /
    • v.13 no.6
    • /
    • pp.369-373
    • /
    • 2003
  • Magneto-optic Kerr Effect(MOKE), AFM and magnetoresistance measurements have been carried out on as-deposited and annealed Magnetic Tunnel Junctions(MTJs) with junction sizes 180, 250, 320 and 380 $\mu\textrm{m}$ in order to investigate the correlation among interlayer exchange coupling, surface roughness and junction size. Relatively irregular variations of coercivity $H_{c}$ (∼17.5 Oe) and interlayer exchange coupling $H_{E}$ (∼17.5 Oe) are observed over the junction in as-deposited sample prepared by DC magnetron sputtering. After annealing at $200^{\circ}C$, $H_{c}$ decreases to 15 Oe, while $H_{ E}$ increases to 20 Oe with smooth local variation. $H_{E}$ shows very good correlation with surface roughness across the junction in agreement with Neel's orange peel coupling. The increasing slope per $\mu\textrm{m}$ of normalized $H_{c}$ and $H_{E}$ are same near junction edge along free-layer direction irrespective of junction size, giving relatively uniform $H_{c}$ and $H_{ E}$ for wider junction size. Thickness profiles of the junctions measured with $\alpha$-step show increasingly flat top surface for larger junctions, indicating better uniformity for large. junctions in agreement with the normalized$ H_{c}$ and H$/_{E}$ curves. TMR ratios also increase with increasing junction size, indicating improvement for larger uniform junctions.

Comparison of Electrodeposited Carbon Fibers Reinforce Epoxy Composites Using Monomeric and Polymeric Coupling Agents

  • Park, Joung-Man;Kim, Yeong-Min
    • Macromolecular Research
    • /
    • v.8 no.4
    • /
    • pp.153-164
    • /
    • 2000
  • By electrodeposition (ED) using a monomeric- and two polymeric coupling agents, the interfacial shear strength (IFSS) of carbon fiber/epoxy composites was investigated by fragmentation test. ED results were compared with the dipping and the untreated cases under dry and wet conditions. Multi-fiber composites (MFC) were used for the direct comparison for the untreated and the treated cases. Various treating conditions including time, concentration and temperature were evaluated, respectively. Under dry and wet conditions ED treatment exhibited much higher IFSS improvement compared to the dipping and the untreated cases. Monomeric- and polymeric coupling agents exhibited the comparative IFSS improvement. Adsorption mechanism between coupling agents and carbon fiber was analyzed in terms of the electrolyte molecular interactions during ED process based on to the chain mobility. The microfailure modes occurring from the fiber break, matrix and interlayer cracks were correlated to IFSS.

  • PDF