• Title/Summary/Keyword: Interlaced-to-progressive format conversion

Search Result 2, Processing Time 0.015 seconds

A time recursive approach for do-interlacing using improved ELA and motion compensation based on hi-directional BMA (개선된 ELA와 양방향 BMA기반의 움직임 보상을 이용한 재귀적 디인터레이싱)

  • 변승찬;변정문;김경환
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.5
    • /
    • pp.87-97
    • /
    • 2004
  • In this paper, we propose an algorithm for interlaced-to-progressive conversion by the weighted summation of the information collected from spatial do-interlacing method, in which the weighted edge based line average is applied, and the temporal method in which the motion compensation is employed by using hi-directional BMA (block matching algorithm). We employed time-recursive and motion adaptive processing as motion detection is involved. Also, a median filter is used to deal with limitation of the linear summation in which only an intermediate of values being involved is determined. The main goal of the approach is to overcome the shortcomings of each of the do-interlacing techniques without significant increment of the computational complexity, and the proposed method is apt to implement in hardware for real-time processing.

A Motion Adaptive Deinterlacing Algorithm Using Improved Motion Detection (향상된 움직임 탐색 기법을 적용한 움직임 적응적 디인터레이싱 알고리듬)

  • Yun, Janghyeok;Jeon, Gwanggil;Jeong, Jechang
    • Journal of Broadcast Engineering
    • /
    • v.18 no.2
    • /
    • pp.167-177
    • /
    • 2013
  • In this paper, a motion adaptive deinterlacing algorithm is proposed. It consists of three parts: (1) modified edge-based line average, (2) pixel-based consequent five-field motion detection, and (3) block-based local characteristic for detecting true motion and calculating the motion intensity by using an improved method which is able to detect the inner part of moving objects precisely as well as to reduce the risk of false detection caused by intrinsic noises in the image. Depending on the detected motion activity level, it combines spatial and temporal methods with weighting factor. Simulations conducted on several video sequences indicate that the performance of the proposed method is superior to the conventional methods in terms of both subjective and objective video quality.