• Title/Summary/Keyword: Interior panel

Search Result 161, Processing Time 0.025 seconds

Preparation and Characterizations of Wood Plastic Composite Panel Fabricated with Chamaecyparis obtusa Wood Flour (편백나무 목분을 첨가한 합성목재 패널의 제조 및 특성 평가)

  • Kim, Soo-Jong
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.5
    • /
    • pp.126-132
    • /
    • 2022
  • Wood Plastic Composite(WPC) has been mostly used for outdoor purposes such as deck materials and trails so far. In this study, WPC panels with improved antibacterial properties, total volatile organic compound emissions (TVOC), and flame retardant were manufactured to use Wood Plastic Compound as interior materials for indoor use. WPC compound was prepared by mixing Chamaecyparis obtusa wood flour with high density polyethylene(HDPE). The prepared WPC compound exhibited excellent antibacterial and antifungal properties, and the total volatile organic compound emission(TVOC) was 0.062 mg/m2·h. The WPC panel(303mm×606mm×10mm) manufactured by a twin screw extruder with the manufactured compound achieved the flame retardant grade 2 standard of KS F 2271.

Effect of Air-circulation Ways on Air Uniformity and Mushroom Quality in a Cultivation Facility for Oyster Mushroom (공기순환 방법이 느타리버섯 재배사 공기균일도 및 버섯품질에 미치는 영향)

  • Yum, Sung-Hyun;Park, Hye-Sung
    • Journal of Mushroom
    • /
    • v.20 no.3
    • /
    • pp.127-137
    • /
    • 2022
  • Effects of substrate bed interior environments on mushroom qualities were investigated in oyster mushroom cultivation facilities in which either Reversible Air-Circulation Fans (RACF) blowing air in two directions (upwards and downwards) or customary Convection Fans (CF) with air blowing only upwards were operated throughout the cultivation period. Two days before harvest, the deviation ranges of the bed interior temperature and relative humidity in the facility using RACF were in the ranges of 1.0-1.3℃ and 7.8-9.0% in the first growing cycle, and within 0.7-1.1℃ and 10.0-11.4% in the second cycle. In the facility using CF, the ranges of variation in the indoor environment parameters (5.8-6.4℃ and 21.3-23.1% in the first growing cycle, and 3.4-5.7℃ and 14.6-18.3% in the second growing cycle) were much enlarged compared to those associated with RACF. These results strongly indicate that RACF significantly enhances air uniformity. Some mushroom qualities differed between growing cycles. For instance RACF in the first cycle gave somewhat better qualities than CF, but some qualities, like pileus diameter and stipe length, were slightly lower than those described for CF in the second cycle when the cultivation substrate weakened. The observation that some qualities worsened under RACF conditions, despite better air uniformity during the growing cycle, revealed the possibility that downward wind may exert a non-negligible negative effect on mushroom growth. Therefore in the future, making wind measurements on the interior and exterior of substrate beds is necessary to obtain insights into their influences on mushroom qualities. The RACF operation manual needs to be edited to convey this necessity.

An Experimental Study on the Mechanical and Durability Properties of Ductile Cement Panel Used Vacuum Extrusion Molding (진공압출성형 고인성 시멘트 패널의 역학 및 내구특성에 관한 실험적 연구)

  • Rho, Hyoung-Nam;Lee, Jong-Suk;Han, Byung-Chan;Kwon, Young-Jin;Lee, Sang-Soo;Song, Ha-Young
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.473-476
    • /
    • 2008
  • Due to the pursuit of high function and international price increase in the field of construction, the application of the secondary product using cement is on the increase gradually in the construction industry in the pursuit of economic cost reduction by the shortening of the construction time like Expediting and the dry construction method at the same time. However, it is in very urgent situation of measures to improve the structural performance or durable performance because it is limited for use in terms of panel in interior exterior building or functional repair reinforce as yet. Accordingly, this study is to investigate applicability of permanent Formwork like mould with the structural performance or excellent durable performance in the field of construction, and to derive optimum mixture in the performance and quality of manufacture. As a result of analysis comparison with the dynamic and durable properties of vacuum extrusion molding high toughness cement panel according to the mixture of four conditions, this study has found that the test body of mixing ECC-DP3 using small filler and large granulated blast furnace slag and powder flame retardant had excellent relative hardness and bending stress strain. The durable performance has shown excellent tendency by the decrease of porosity and enhancement of water-tightness.

  • PDF

Heat transfer of green timber wall panels (그린팀버월 패널의 열전달 특성)

  • Kim, Yun-Hui;Jang, Sang-Sik;Shin, Il-Joong
    • Korean Journal of Agricultural Science
    • /
    • v.38 no.1
    • /
    • pp.115-120
    • /
    • 2011
  • 20% of total energy use to sustain temperature of building inside. In this reasons, researchers effort to improve the thermal insulation capacity with new wall system. Using appropriate materials and consisting new wall system should considered in energy saving design. OSB(Oriented strand board), Larch lining board used to consist wall system. $2{\sim}6$ Larch lining board has tongue & groove shape for preventing moisture. Comparing with gypsum board and green timber lining board as interior sheathing material, temperature difference of Green timber wall system was bigger than temperature difference of gypsum board wall system. This aspects indicate that Green timber wall system was revealed higher thermal insulation property than gypsum board wall system. Gypsum board portion transfer heat easily because temperature difference gradient of gypsum board wall system was smaller than OSB wall system. Total temperature variation shape of G-4-S and G-6-S show similar model but, temperature variation shape in green timber wall portion assume a new aspect. The purpose of this study was that possibility of thermal insulation variation and new composition of wall system identify to improve thermal insulation performance. In the temperature case, this study shows possibility of improving thermal insulation performance. Humidity, sunshine and wind etc. should considered to determine building adiabatic properties.

Assessment of a smartphone-based monitoring system and its application

  • Ahn, Hoyong;Choi, Chuluong;Yu, Yeon
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.3
    • /
    • pp.383-397
    • /
    • 2014
  • Information technology advances are allowing conventional surveillance systems to be combined with mobile communication technologies, creating ubiquitous monitoring systems. This paper proposes monitoring system that uses smart camera technology. We discuss the dependence of interior orientation parameters on calibration target sheets and compare the accuracy of a three-dimensional monitoring system with camera location calculated by space resectioning using a Digital Surface Model (DSM) generated from stereo images. A monitoring housing is designed to protect a camera from various weather conditions and to provide the camera for power generated from solar panel. A smart camera is installed in the monitoring housing. The smart camera is operated and controlled through an Android application. At last the accuracy of a three-dimensional monitoring system is evaluated using a DSM. The proposed system was then tested against a DSM created from ground control points determined by Global Positioning Systems (GPSs) and light detection and ranging data. The standard deviation of the differences between DSMs are less than 0.12 m. Therefore the monitoring system is appropriate for extracting the information of objects' position and deformation as well as monitoring them. Through incorporation of components, such as camera housing, a solar power supply, the smart camera the system can be used as a ubiquitous monitoring system.

Experimental research on seismic behavior of novel composite RCS joints

  • Men, Jinjie;Guo, Zhifeng;Shi, Qingxuan
    • Steel and Composite Structures
    • /
    • v.19 no.1
    • /
    • pp.209-221
    • /
    • 2015
  • Results from an experimental study on the seismic response of six composite reinforced concrete column-to-steel beam interior joints are presented. The primary variable investigated is the details in the joint. For the basic specimen, the main subassemblies of the beam and column are both continuous, and the steel beam flanges extended to the joint are partly cut off. Transverse beam, steel band plates, cove plates, X shape reinforcement bars and end plates are used in the other five specimens, respectively. After the joint steel panel yielded, two failure modes were observed during the test: local failure in Specimens 1, 2 and 4, shear failure in Specimens 3, 5 and 6. Specimens 6, 3, 5 and 4 have a better strength and deformation capacity than the other two specimens for the effectiveness of their subassemblies. For Specimens 2 and 4, though the performance of strength degradation and stiffness degradation are not as good as the other four specimens, they all have excellent energy dissipation capacity comparing to the RC joint, or the Steel Reinforced Concrete (SRC) joint. Based on the test result, some suggestions are presented for the design of composite RCS joint.

Comparing Financial Portfolios and Housing Wealth Effects of Single Income and Dual Income Couples (외벌이와 맞벌이 부부가구의 자산포트폴리오 특성 및 주택자산효과 차이 비교)

  • Lee, Hyunjeong
    • Journal of the Korean housing association
    • /
    • v.27 no.6
    • /
    • pp.95-104
    • /
    • 2016
  • The purpose of this research is to compare housing wealth effects of home-owning single income couples (SIC) and dual income couples (DIC) on their non-durable consumption and to assess the effects by location, age groups, housing structure type, debt-to-asset ratio and employment status. Using the Korean Labor and Income Panel Study (KLIPS) of 2014, this empirical study identified 1,198 SIC households and 1,044 DIC households, and employed multiple regression analysis. The main results reveal that the difference of financial portfolios between SIC and DIC households was little but housing wealth effects were stronger among SIC households than DIC counterpart. It's evident that housing wealth effects were conspicuous for SIC and DIC households who were headed by wage earners aged over 40s, and resided in apartment outside the Seoul Metropolitan Area. However, household debt became a determinant in contradicting housing wealth effects of SIC and DIC households. While the household financial dimension was in proportion to income, DIC households didn't gain much financial security due to increasing expenditure. Further, this research imply that liquidity constraints explicitly posed a more serious threat to SIC households whose dependence on housing asset is larger than their counterpart.

User Benefits Analysis of Customized House Design Guidelines for Physically Disabled People (지체장애인 맞춤형주택 디자인가이드라인의 사용자혜택 분석)

  • Lee, Yeun-Sook;Jang, Mi-Seon;Park, Ji-Young
    • Journal of the Korean housing association
    • /
    • v.26 no.6
    • /
    • pp.93-102
    • /
    • 2015
  • Most existing residential environment of disabled people has made them exposed to the risk of safety accidents, and therefore hinders their independent living. In this regard, the importance of desirable residential environment has emerged. Some preceding studies have addressed the characteristics of disabled people's residential environment plan; however, the information on what environmental benefits are offered through such characteristics is insufficient. This study aims to analyze the housing design guidelines for disabled people in respect of the benefit of disabled people who are actual users. In this study, essential design guidelines for disabled people verified through expert workshop panel was analyzed based on user benefit theory. According to the study results, the total guidelines have the most characteristics supporting behavioral facilitation, and mainly consist of physiological maintenance characteristics related to disabled people's health and safety. Also, it is founded that environmental affordance essentially required depending on each spatial function was different. The ratio of physiological maintenance item is high in access route, unlike living room, kitchen and bed room where behavioral facilitation is especially emphasized. These findings can be utilized as basic data for customized residential environment plan to realize residential welfare for disabled people.

Absorption Characteristics of Perforated Environment Friendly Sound Absorbing Board using Hwangto (황토를 이용한 친환경 유공 흡음보드의 흡음특성)

  • Kim, Sun-Woo;Park, Hyeon Ku
    • KIEAE Journal
    • /
    • v.11 no.1
    • /
    • pp.3-8
    • /
    • 2011
  • Sound absorbing materials used for lightweight panels and interior material are mainly made of fibroid material such as glass wool or rock wool. However these fiber type sound absorbing materials have some problems such that sound absorption could be decreased as time goes by because of durability. In addition, dust scattering from fiber type material can cause another problem in health. In this point of view, this study aims to develop environment friendly sound absorbing material using Hwangto(so called loess or yellow soil), a traditional housing material. Hwangto is natural housing material in Korea and generally known for improving indoor air quality. Hwangto panel is made to construct on the floor, wall and ceiling, and expected that there is not enough absorption. Present study tried to develop environment friendly sound absorbing material that has high sound absorption performance with good environment performance in terms of air quality. Pore rate was designed to maximize the absorption in the specific frequency bands, and two kinds of backing space were applied in order to see the effect of backing space. As a result peak frequency that has maximum absorption is going high as the pore rate is increased. The backing space provides more absorption and makes the peak frequency down to low.

Improved Design Process for Interior noise in Passenger Vehicles (자동차 실내소음을 위한 개선된 설계 프로세스)

  • Kim, Hyo-Sig;Kim, Heon-Hee;Yoon, Seong-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.974-979
    • /
    • 2008
  • A design process for the structure-borne noise in a passenger vehicle is presented. The proposed process is improved from the previous one. The major difference between the current and last ones is that most of the countermeasures should be developed before fixing a tool for structural parts. This is requested for QCDP(Quality, Cost, Delivery and Productivity) by the design engineers. The proposed one consists of 4 steps: Problem definition, Cause analysis, Development of counter-measure and Validation. Based on the general rule: divide and conquer, the complex problem can be simplified into a few critical sub-systems through the first step: Problem definition. Secondly, the critical causes can be identified for the critical sub-systems through the second step: Cause analysis. Thirdly, effective countermeasures are investigated and produced through the third step: Countermeasure development. The proposed countermeasures are finally validated in the forth step: Validation.

  • PDF