• Title/Summary/Keyword: Interferometric phase-imaging

Search Result 12, Processing Time 0.031 seconds

Role of Arbitrary Intensity Profile Laser Beam in Trapping of RBC for Phase-imaging

  • Kumar, Ranjeet;Srivastava, Vishal;Mehta, Dalip Singh;Shakher, Chandra
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.78-87
    • /
    • 2016
  • Red blood cells (RBCs) are customarily adhered to a bio-functionalised substrate to make them stationary in interferometric phase-imaging modalities. This can make them susceptible to receive alterations in innate morphology due to their own weight. Optical tweezers (OTs) often driven by Gaussian profile of a laser beam is an alternative modality to overcome contact-induced perturbation but at the same time a steeply focused laser beam might cause photo-damage. In order to address both the photo-damage and substrate adherence induced perturbations, we were motivated to stabilize the RBC in OTs by utilizing a laser beam of ‘arbitrary intensity profile’ generated by a source having cavity imperfections per se. Thus the immobilized RBC was investigated for phase-imaging with sinusoidal interferograms generated by a compact and robust Michelson interferometer which was designed from a cubic beam splitter having one surface coated with reflective material and another adjacent coplanar surface aligned against a mirror. Reflected interferograms from bilayers membrane of a trapped RBC were recorded and analyzed. Our phase-imaging set-up is limited to work in reflection configuration only because of the availability of an upright microscope. Due to RBC’s membrane being poorly reflective for visible wavelengths, quantitative information in the signal is weak and therefore, the quality of experimental results is limited in comparison to results obtained in transmission mode by various holographic techniques reported elsewhere.

From Airborne Via Drones to Space-Borne Polarimetric- Interferometric SAR Environmental Stress- Change Monitoring ? Comparative Assessment of Applications

  • Boerner, Wolfgang-Martin;Sato, Motoyuki;Yamaguchi, Yoshio;Yamada, Hiroyoshi;Moon, Woo-Il;Ferro-Famil, Laurent;Pottier, Eric;Reigber, Andreas;Cloude, Shane R.;Moreira, Alberto;Lukowski, Tom;Touzi, Ridha
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1433-1435
    • /
    • 2003
  • Very decisive progress was made in advancing fundamental POL-IN-SAR theory and algorithm development during the past decade. This was accomplished with the aid of airborne & shuttle platforms supporting single -to-multi-band multi-modal POL-SAR and also some POL-IN-SAR sensor systems, which will be compared and assessed with the aim of establishing the hitherto not completed but required missions such as tomographic and holographic imaging. Because the operation of airborne test-beds is extremely expensive, aircraft platforms are not suited for routine monitoring missions which is better accomplished with the use drones or UAVs. Such unmanned aerial vehicles were developed for defense applications, however lacking the sophistic ation of implementing advanced forefront POL-IN-SAR technology. This shortcoming will be thoroughly scrutinized resulting in the finding that we do now need to develop most rapidly POL-IN-SAR drone-platform technology especially for environmental stress-change monitoring with a great variance of applications beginning with flood, bush/forest-fire to tectonic-stress (earth-quake to volcanic eruptions) for real-short-time hazard mitigation. However, for routine global monitoring purposes of the terrestrial covers neither airborne sensor implementation - aircraft and/or drones - are sufficient; and there -fore multi-modal and multi-band space-borne POL-IN-SAR space-shuttle and satellite sensor technology needs to be further advanced at a much more rapid phase. The existing ENVISAT with the forthcoming ALOSPALSAR, RADARSAT-2, and the TERRASAT will be compared, demonstrating that at this phase of development the fully polarimetric and polarimetric-interferometric modes of operation must be viewed and treated as preliminary algorithm verification support modes and at this phase of development are still not to be viewed as routine modes.

  • PDF

Applications of Digital Holography in Biomedical Microscopy

  • Kim, Myung-K.
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.2
    • /
    • pp.77-89
    • /
    • 2010
  • Digital holography (DH) is a potentially disruptive new technology for many areas of imaging science, especially in microscopy and metrology. DH offers a number of significant advantages such as the ability to acquire holograms rapidly, availability of complete amplitude and phase information of the optical field, and versatility of the interferometric and image processing techniques. This article provides a review of the digital holography, with an emphasis on its applications in biomedical microscopy. The quantitative phase microscopy by DH is described including some of the special techniques such as optical phase unwrapping and holography of total internal reflection. Tomographic imaging by digital interference holography (DIH) and related methods is described, as well as its applications in ophthalmic imaging and in biometry. Holographic manipulation and monitoring of cells and cellular components is another exciting new area of research. We discuss some of the current issues, trends, and potentials.

Differential Interference Contrast Microscopic Module Using a Polarization Grating for Quantitative Phase Imaging (편광 격자 기반 정량적 위상 이미징을 위한 미분 간섭 현미경 모듈 개발)

  • Jin Hee Cho;Ki-Nam Joo
    • Korean Journal of Optics and Photonics
    • /
    • v.34 no.6
    • /
    • pp.261-268
    • /
    • 2023
  • We propose a compact differential interference contrast microscopic module, which enables snapshot measurements for quantitative phase imaging. The proposed module adopts the lateral shearing interferometric principle, which can obtain self-interference without a reference. Due to the absence of the reference, the system is more stable than the typical interferometric systems. It uses a polarization grating to generate two laterally shifted wavefronts based on its birefringence and polarizing beam-splitting characteristics. Furthermore, the use of a polarization camera does not require sequential measurements for the phase extraction. In the experiments, we observe and measure the timely varying changes of various specimens to verify the system performance with the bright field images and phase contrast images. Because the proposed microscopic module also has the merit of being adaptable to typical microscopy instead of using an imaging camera, it can conveniently replace conventional contrast microscopy.

System Design and Evaluation of a Compact and High Energy X-ray Talbot-Lau Grating Interferometer for Industrial Applications

  • Lee, Seho;Oh, Ohsung;Kim, Youngju;Lee, Seung Wook;Kim, Insoo;Kim, Jinkyu
    • Journal of the Korean Physical Society
    • /
    • v.73 no.12
    • /
    • pp.1827-1833
    • /
    • 2018
  • X-ray grating interferometry has been an active area of research in recent years. In particular, various studies have been carried out for the practical use of the x-ray grating interferometer in medical and industrial fields. For the commercialization of the system, it needs to be optimized for its application. In this study, we have developed a prototype of the compact high energy x-ray grating interferometer of which the high effective energy and compactness is of our primary feature of design. We have designed the Talbot-Lau x-ray interferometer in a symmetrical geometry with an effective energy of 54.3 keV. The system has a source-to-analyzer grating distance of 788.4 mm, which is compact enough for a commercial product. In a normal operation, it took less than ten seconds to acquire a set of phase stepping images. The acquired images had a maximum visibility of about 15%, which is relatively high compared with the visibilities of the other high-energy grating interferometric systems reported so far.

INTERFEROMETRIC MONITORING OF GAMMA–RAY BRIGHT ACTIVE GALACTIC NUCLEI II: FREQUENCY PHASE TRANSFER

  • ALGABA, JUAN-CARLOS;ZHAO, GUANG-YAO;LEE, SANG-SUNG;BYUN, DO-YOUNG;KANG, SIN-CHEOL;KIM, DAE-WON;KIM, JAE-YOUNG;KIM, JEONG-SOOK;KIM, SOON-WOOK;KINO, MOTOKI;MIYAZAKI, ATSUSHI;PARK, JONG-HO;TRIPPE, SASCHA;WAJIMA, KIYOAKI
    • Journal of The Korean Astronomical Society
    • /
    • v.48 no.5
    • /
    • pp.237-255
    • /
    • 2015
  • The Interferometric Monitoring of Gamma–ray Bright Active galactic nuclei (iMOGABA) program provides not only simultaneous multifrequency observations of bright gamma–ray detected active galactic nuclei (AGN), but also covers the highest Very Large Baseline Interferometry (VLBI) frequencies ever being systematically monitored, up to 129 GHz. However, observation and imaging of weak sources at the highest observed frequencies is very challenging. In the second paper in this series, we evaluate the viability of the frequency phase transfer technique to iMOGABA in order to obtain larger coherence time at the higher frequencies of this program (86 and 129 GHz) and image additional sources that were not detected using standard techniques. We find that this method is applicable to the iMOGABA program even under non–optimal weather conditions.

Oceanic Variables extracted from Along-Track Interferometric SAR Data

  • Kim, Duk-Jin;Moon, Wooil-M.
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.429-434
    • /
    • 2002
  • The Synthetic Aperture Radar (SAR) data are considered to contain the greatest amount of information among various microwave techniques developed for measuring ocean variables from aircraft or satellites. They have the potential of measuring wavelength, wave direction and wave height of the ocean waves. But, it is difficult to retrieve significant ocean wave heights and surface current from conventional SAR data, since the imaging mechanism of ocean waves by a SAR is determined by the three basic modulation processes arise through the tilt modulation, hydrodynamic modulation and velocity bunching which are poorly known functions. Along-Track Interferometric (ATI) SAR systems can directly detect the Doppler shift associated with each pixel of a SAR image and have been used to estimate wave fields and surface currents. However, the Doppler shift is not simply proportional to the component of the mean surface current. It includes also contributions associated with the phase velocity of the Brags waves and orbital motions of all ocean waves that are longer than Brags waves. In this paper, we have developed a new method for extracting the surface current vector using multiple-frequency (L- & C-band) ATI SAR data, and have generated surface wave height information.

  • PDF

The Study of Selecting a Test Area for Validating the Proposal Specification of InSAS(Interferometric Synthetic Aperture Sonar) (간섭계측 합성개구소나 성능 평가를 위한 해상 시험장 선정에 관한 연구)

  • Park, Yosup;Kim, Seong Hyeon;Koh, Jieun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.329-338
    • /
    • 2022
  • This paper provides a case study of development testing and evaluation of design goal of Interferometric SAS (Synthetic Aperture Sonar) system that is developing supported by Civil-Military Technology Cooperation Center in offshore fields. For Deep water operating capabilities evaluation, We have surveyed candidate field, bathymetric mapping and target identification over 200 m depth, East Sea. In testing phase, We have provided environmental information of testing field include water column, seabed and weather condition in real time. And to compare excellency of developing InSAS, we have gather commercial imaging sonar system data with same target. This case study will support the Test Readiness Review of future underwater surveillance system developing via investigate marine testing field environment, testing facilities and planning.

The Application of InSAR Signature Time Series for Landcover Classification (InSAR Signature 시계열 분석을 통한 토지피복분류)

  • Yun, Hye Won;Choi, Yun Soo;Yoon, Ha Su;Ko, Jong Sik;Cho, Seong Kil
    • Spatial Information Research
    • /
    • v.22 no.1
    • /
    • pp.27-33
    • /
    • 2014
  • Considering the wide coverage, the transparency from climate condition, Interferometric Synthetic Aperture Radar (InSAR) possesses a great potential for the landcover classification as shown in many precedent researches. In addition to the merits of InSAR products for the landcover classification, the time series analysis of InSAR pairs can provide a highly reliable basis to interpret landcover. We applied such idea with the test site in Mountain Baekdu located on the border between North Korea and China. Since it is recently noted as the potential volcanic activation site, the landcover especially the vegetation distribution information is highly essential to validate the reliability of Differential Interferometric Synthetic Aperture Radar (DInSAR) over Mt. Baekdu. The algorithms combining the auxiliary information from Moderate Resolution Imaging Spectroradiometer (MODIS) to analyze the phase coherence and backscatter coefficient of Observing Satellite (ALOS) Phased Array type L-band Synthetic Aperture Radar (PALSAR) was established. The results using InSAR signatures from two polarization modes of ALOS PALSAR showed high reliability for mining landcover and spatial distribution.