• 제목/요약/키워드: Interferometers

검색결과 95건 처리시간 0.03초

MZI를 이용한 전광 직렬-병렬 데이터 형식 변환기 구현과 활용 방안 (Implementation of All-Optical Serial-Parallel Data Converters Using Mach-Zehnder Interferometers and Applications)

  • 이성철
    • 디지털산업정보학회논문지
    • /
    • 제7권2호
    • /
    • pp.59-65
    • /
    • 2011
  • All-optical signal processing is expected to offer advantages in speed and power consumption against over electronics signal processing. It has a potential to solve the bottleneck issues of ultra-high speed communication network nodes. All-optical serial-to-parallel and parallel-to-serial data converters would make it possible to easily process the serial data information of a high-speed optical packet without optical-to-electronic-to-optical data conversion. In this paper, we explain the principle of simple and easily expandable all-optical serial-to-parallel and parallel-to-serial data converters based on Mach-Zehnder interferometers. We experimentally demonstrate these data converters at 10Gbit/s serial data rate. They are useful all-optical devices for the all-optical implementations of label decoding, self-routing, control of variable packets, bit-wise logical operation, and data format conversion.

Coherence Studies of Photons Emitted from a Single Terrylene Molecule Using Michelson and Young’s Interferometers

  • Yoon, Seung-Jin;Trinh, Cong Tai;Lee, Kwang-Geol
    • Journal of the Optical Society of Korea
    • /
    • 제19권6호
    • /
    • pp.555-559
    • /
    • 2015
  • Coherence length (time) is a key parameter in many classical and quantum optical applications. Two interferometers – Michelson and Young’s double-slit – are used to characterize the temporal coherence of single photons emitted from single terrylene molecules. For quantitative analysis, a dispersion-related distortion in the interference pattern of a Michelson interferometer is carefully corrected by a simple dispersion compensation. Additionally, it has been demonstrated that Young’s interferometer can be used in temporal coherence studies at the single photon level with high accuracy. The pros and cons of the two systems are discussed. The measured coherence lengths in the two systems are consistent with one another under the self-interference interpretations.

Lithium Niobate (LiNbO3) Photonic Electric-Field Sensors

  • Jung, Hongsik
    • 센서학회지
    • /
    • 제31권4호
    • /
    • pp.194-213
    • /
    • 2022
  • This study comprehensively reviewed four types of integrated-optic electric-field sensors based on titanium diffused lithium-niobate waveguides: symmetric and asymmetric Mach-Zehnder interferometers, 1×2 directional couplers, and Y-fed balanced-bridge Mach-Zehnder interferometers. First, we briefly explain the crystal properties and electro-optic effect of lithium niobate and the waveguide fabrication process. We theoretically analyzed the key parameters and operating principles of each sensor and antennas. We also describe and compare the design, simulation, implementation, and performance tests: dc and ac characteristics, frequency response, dynamic range, and sensitivity. The experimental results revealed that the sensitivity of the sensor based on the Y-fed balanced bridge Mach-Zehnder interferometer (YBB-MZI) was higher than that of the other types of sensors.

전계측정용 전기광학 $Ti:LiNbO_3$ Mach-Zehnder 집적광학 간섭기에 관한 연구 (A Study on Electrooptic $Ti:LiNbO_3$ Mach-Zehnder integrated-optic interferometers for Electric-Field Measurement)

  • 정홍식
    • 대한전자공학회논문지SD
    • /
    • 제48권12호
    • /
    • pp.15-22
    • /
    • 2011
  • 전계 측정시스템에서 센서 감지부로 $1.3{\mu}m$ 파장에서 동작하는 대칭/비대칭 구조의 Mach-Zehnder 간섭기를 구현하였다. BPM 전산모사를 통해서 소자를 설계하였고, $LiNbO_3$에 Ti 확산방법으로 구현된 채널 광도파로에 집중전극구조를 배열하여 집적광학 칩을 제작하였다. 대칭 구조로 위상차가 없도록 제작된 소자는 전기신호 200Hz, 1kHZ 구형 파형에서 반 파장전압 $V_{\pi}$=6.6V, 변조 깊이 100%, 75%로 각각 측정되었다. 한편 ${\pi}$/2 위상차를 갖도록 설계된 비대칭 구조에서는 DC 0V에서 측정된 출력 광세기가 최고치에 약 1//2에 해당됨을 확인하였으며, 1kHz 전기 신호를 인가해서 ${\pi}$/2 위상차 때문에 나타나는 전기적 현상들을 확인하였다.

THE AUSTRALIA TELESCOPE NATIONAL FACILITY

  • EDWARDS, PHILIP G.
    • 천문학논총
    • /
    • 제30권2호
    • /
    • pp.655-657
    • /
    • 2015
  • The Australia Telescope National Facility (ATNF) consists of the Parkes and Mopra radio telescopes, and the Australia Telescope Compact Array, with the first elements of the wide-field Australian Square Kilometer Array Pathfinder (ASKAP), currently being commissioned. The capabilities of these facilities are described.

GRAVITATIONAL WAVES: SOURCES AND DETECTORS

  • DHURANDHAR S. V.
    • 천문학회지
    • /
    • 제29권spc1호
    • /
    • pp.273-276
    • /
    • 1996
  • The world wide efforts for detecting gravitational waves, the detectors in vogue and the expected astrophysical sources of gravitational waves will be discussed. Ground based detectors especially, the resonant bar detectors and laser interferometers will be described with a brief mention of the space based detector (the LISA project). Astrophysical sources of gravitational waves such as coalescing binaries, supernovae, pulsars/ rotating neutron stars, stochastic background will be discussed in the context of detection.

  • PDF

헤테로다인 변위 측정 간섭계의 고속, 고분해능 위상 측정 (High-speed, High-resolution Phase Measuring Technique for Heterodyne Displacement Measuring Interferometers)

  • 김민석;김승우
    • 한국정밀공학회지
    • /
    • 제19권9호
    • /
    • pp.172-178
    • /
    • 2002
  • One of the ever-increasing demands on the performances of heterodyne interferometers is to improve the measurement resolution, of which current state -of-the-art reaches the region of sub-nanometers. So far, the demand has been met by increasing the clock speed that drives the electronics involved fur the phase measurement of the Doppler shift, but its further advance is being hampered by the technological limit of modem electronics. To cope with the problem, in this investigation, we propose a new scheme of phase -measuring electronics that reduces the measurement resolution without further increase in clock speed. Our scheme adopts a super-heterodyne technique that lowers the original beat frequency to a level of 1 MHz by mixing it with a stable reference signal generated from a special phase- locked-loop. The technique enables us to measure the phase of Doppler shift with a resolution of 1.58 nanometer at a sampling rate of 1 MHz. To avoid the undesirable decrease in the maximum measurable speed caused by the lowered beat frequency, a special form of frequency up-down counting technique is combined with the super-heterodyning. This allows performing required phase unwrapping simply by using programmable digital gates without 2n ambiguities up to the maximum velocity guaranteed by the original beat frequency.