• Title/Summary/Keyword: Interferometer Technique

Search Result 159, Processing Time 0.025 seconds

Vibration Measurement and Flutter Suppression Using Patch-type EFPI Sensor System

  • Kim, Do-Hyung;Han, Jae-Hung;Lee, In
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.6 no.1
    • /
    • pp.17-26
    • /
    • 2005
  • An optical phase tracking technique for an extrinsic Fabry-Perot interferometer (EFPI) is proposed in order to overcome interferometric non-linearity. Basic idea is utilizing strain-rate information, which cannot be easily obtained from an EFPI sensor itself. The proposed phase tracking system consists of a patch-type EFPI sensor and a simple on-line phase tracking logic. The patch-type EFPI sensor comprises an EFPI and a piezoelectric patch. An EFPI sensor itself has non-linear behavior due to the interferometric characteristics, and a piezoelectric material has hysteresis. However, the composed patch-type EFPI sensor system overcomes the problems that can arise when they are used individually. The dynamic characteristics of the proposed phase tracking system were investigated, and then the patch-type EFPI sensor system was applied to the active suppression of flutter, dynamic aeroelastic instability, of a swept-back composite plate structure. The proposed system has effectively reduced the amplitude of the flutter mode, and increased flutter speed.

High resolution heterodyne interferometric technique with AOM for measuring the thermal expansion (음향광변조기를 이용한 고분해능의 헤테로다인 간섭식 열팽창 측정기술)

  • 최병일;이상현;김종철;임동건
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.6
    • /
    • pp.530-536
    • /
    • 2002
  • The accurate measurements of thermal expansion coefficients is one of the most important techniques required not only in material science but also in industries. A high precision interferometric dilatometer, using acoustic optical modulator, has been constructed and its performance has been tested. The system consists of a double-path optical heterodyne interferometer and a radiant heating furnace. This provides highly accurate length measurement, and allows rapid heating and cooling method for the specimen. A three longitudinal mode frequency stabilized He-Ne laser, using the secondary beat frequency, is constructed. Its stability is found to be $5{\times}10^{-9}$. The uncertainty in the length measurement is estimated to be of nanometer order in the range between room temperature to 1100 K.

High-speed, High-resolution Phase Measuring Technique for Heterodyne Displacement Measuring Interferometers (헤테로다인 변위 측정 간섭계의 고속, 고분해능 위상 측정)

  • Kim, Min-Seok;Kim, Seung-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.9
    • /
    • pp.172-178
    • /
    • 2002
  • One of the ever-increasing demands on the performances of heterodyne interferometers is to improve the measurement resolution, of which current state -of-the-art reaches the region of sub-nanometers. So far, the demand has been met by increasing the clock speed that drives the electronics involved fur the phase measurement of the Doppler shift, but its further advance is being hampered by the technological limit of modem electronics. To cope with the problem, in this investigation, we propose a new scheme of phase -measuring electronics that reduces the measurement resolution without further increase in clock speed. Our scheme adopts a super-heterodyne technique that lowers the original beat frequency to a level of 1 MHz by mixing it with a stable reference signal generated from a special phase- locked-loop. The technique enables us to measure the phase of Doppler shift with a resolution of 1.58 nanometer at a sampling rate of 1 MHz. To avoid the undesirable decrease in the maximum measurable speed caused by the lowered beat frequency, a special form of frequency up-down counting technique is combined with the super-heterodyning. This allows performing required phase unwrapping simply by using programmable digital gates without 2n ambiguities up to the maximum velocity guaranteed by the original beat frequency.

Novel dual-grating strain sensor signal processing technique using an unbalanced Mach-Zehnder interferometer (Mach-Zehnder 간섭계를 이용한 광섬유 격자쌍 스트레인 센서의 신호처리 방법)

  • 송민호;이병호;이상배;최상삼
    • Korean Journal of Optics and Photonics
    • /
    • v.8 no.4
    • /
    • pp.333-339
    • /
    • 1997
  • We fabricated a sensor head which consists of spliced different-diameter fiber gratings for discrimination between strain and temperature. Because the fibers were drawn from the same preform, their temperature characteristics were the same but not for strain sensitivities which are inversely proportional to fibers cross-sectional areas. In measurement range of 0-1500$\mu$strain and 20-10$0^{\circ}C$, we could obtain, by using the matrix calculation, the unknown physical quantities within 10% of calculation error compared with the micrometer and thermocouple values. To improve the strain measurement accuracy, we suggest a new, novel method which deploys an unbalanced fiber Mach-Zehnder interferometer. This new signal processing technique converts the strain information to interference signal amplitude variation, temperature-independently. we obtained measurement accuracy nearly 80 times better than that obtainable with the conventional optical spectrum analyzer usage.

  • PDF

A Phase Stabilization System of EFPI for Damage Detection of Composite (복합재료 파손 검출을 위한 EFPI 센서 위상 안정화 시스템)

  • Kim,Dae-Hyeon;Gu,Bon-Yong;Bang,Hyeong-Jun;Kim,Cheon-Gon;Hong,Chang-Seon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.8
    • /
    • pp.44-49
    • /
    • 2003
  • In case of an extrinsic Fabry-Perot interferometric sensor, the phase compensating technique is particularly necessary in applying the interferometer to detecting acoustic emission signals because of signal-fading problems. The technique makes it possible to maintain the phase at the quadrature point. In this paper, we developed the stabilization control sensor system that is composed of a broadband light source, a tunable Fabry-Perot (F-P) filter and a control-circuit board. A tension test of a composite specimen was performed to verify if the developed system could compensate the phase change induced from the tension strain and keep the phase at the quadrature point.

Characteristics of 2-Channel TDM fiber-optic sensor array (TDM 방식의 2채널 광섬유 센서 배열 특성 연구)

  • Lee, Jong-Kil
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.5
    • /
    • pp.306-312
    • /
    • 1998
  • To develop the multi-channel fiber-optic sensor array system, two-channel TDM(Time Division Multiplexing) fiber-optic sensor array was constructed and characterized. The sensor array topology was Mach-Zehender ladder type and PMDI(Phase-Matched Differential Interferometer) technique was used to exploit the efficiency of the array signal processing. By using a synthetic heterodyne demodulation technique, outputs of the two channels were monitored simultaneously. The sensitivities of channel #1 and #2 were measured ${\sim}60{\mu}rad/\sqrt{Hz}$ and ${\sim}80{\mu}rad/\sqrt{Hz}$, respectively. Crosstalk of sensors in the array was found to be approximately -36dB. Based on the results, we could conclude that TDM Mach-Zehnder ladder type sensor array can be used to detect the acoustic signal with stability and efficiency of the sensor array.

  • PDF

Fiber Laser based Fiber Bragg Grating Strain Sensor (광섬유 레이저를 이용한 광섬유격자 스트레인 센서)

  • Kim, Jong-Seop;Park, Hyoung-Jun;Song, Min-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1936-1938
    • /
    • 2002
  • A tunable fiber laser and the Quadrature Sampling technique are used to construct highly sensitive fiber-optic distributive Bragg grating strain sensor system. By using a wavelength-modulated fiber laser, the variations of strain-dependent Bragg wavelengths are transformed into the variations of time-domain reflection profiles. The locations of profile peaks that correspond to the applied strains are demodulated using a precise wavelength encoder that uses a fiber-optic Mach-Zehnder interferometer and Quadrature Sampling technique. With the extremely high sensitive optical encoder, we could obtain not only high sensitivity, but also very linear responses that was impossible with the conventional techniques. This paper is attempted to report the theoretical and experimental results.

  • PDF

Improvement of Measurement Accuracy for Absolute Height by Using Two Types of Doppler and Heterodyne Optical Interferometry (도플러방식과 헤테로다인 방식의 광간섭법을 병용한 절대높이 측정 정밀도 향상)

  • Ahn, Geun-Sik;Jhang, Kyung-Young;Moon, Heui-Kwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.6
    • /
    • pp.128-135
    • /
    • 1996
  • This paper proposes a high precision measurement technique to obtain the height of gage block with a few millimeter height. The proposed technique is consisted of two steps : In the first step, laser position transducer and electric micrometer are adopted to obtain a coarse value of the height of gage block, and then, in the second step, heterodyne laser interferometry is adopted to acquire the precision value. A new kind of phase detector is constructed in the low cost for the heterodyne interferometer and its linearity with ${\pm}1%$ is confirmed by experiment. Also measurement error factors due to enviroments are discussed and methodology to reduce such errors is proposed. Preliminary experiments are carried out for the gage blocks of as high as a few millimeter.

  • PDF

Mode Analysis and Modal Delay Measurement of a Few-Mode Fiber by Using Optical Frequency Domain Reflectometry

  • Ahn Tae-Jung;Moon Sucbei;Youk Youngchun;Jung Yongmin;Oh Kyunghwan;Kim Dug Young
    • Journal of the Optical Society of Korea
    • /
    • v.9 no.2
    • /
    • pp.54-58
    • /
    • 2005
  • A novel mode analysis method and differential mode delay measurement technique for a multimode optical fiber based on optical frequency domain reflectometry has been proposed for the first time. We have used a conventional OFDR with a tunable external cavity laser and a Michelson interferometer. A few-mode optical multimode fiber was prepared to test our proposed measurement technique. The differential mode delay (DMD) of the sample fiber was measured to be 16.58 ps/m with a resolution of 1.5 ps/m. We have also compared the OFDR measurement results with those obtained using a traditional time-domain measurement method.

Liquid Immersion Method for Determining the Refractive Index of a Lens by using the Murty Shearing Interferometer (층밀리기 간섭계를 이용한 렌즈 굴절률의 비파괴적 측정)

  • 이윤우;조현모;이인원
    • Korean Journal of Optics and Photonics
    • /
    • v.2 no.1
    • /
    • pp.7-12
    • /
    • 1991
  • A nondestructive technique for measuring the refractive index of a simple lens is described. The shearing interferornetric technique is used for determining the focal length of a lens by immersing it in various liquids. The lens itself acts as autocollimator and decollimator. An equation for the defocusing error has been theoretically deduced and experimentally verified. The wave aberration has also been investigated for the different values of the focal length.

  • PDF