• Title/Summary/Keyword: Interferometer Technique

Search Result 159, Processing Time 0.021 seconds

A possible application of the nonuniform electric field measurement using Pockets effect (포켈스 효과를 이용한 불평등 전계 측정)

  • Kang, W.J.;Lim, Y.S.;Choi, J.O.;Chang, Y.M.;Koo, J.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2000.11c
    • /
    • pp.513-515
    • /
    • 2000
  • In this paper, new Partial Discharge (PD) detection technique using Pockels-cell was proposed. For this purpose, PD was generated from needle-plane electrode in air and detected by optical measuring system using Pockets cell, based on Mach-Zehnder interferometer, consisting of He-Ne laser, single mode optical fiber, 50/50 beam splitter and photo detector. We show the characteristic of the proto-type sensor for the corona discharge.

  • PDF

Basic Study for the Development of Laser Doppler Vibrometer for the Detection c (초음파 측정용 레이저 도플러 진동계의 개발에 관한 기초연구)

  • Kim, Myoung-Sun;Kim, Ho-Seong
    • Proceedings of the KIEE Conference
    • /
    • 1999.07e
    • /
    • pp.2434-2437
    • /
    • 1999
  • In order to detect the ultrasonic that is generated by the partial discharge of the heavy electric machinery, a Laser Doppler Vibrometer (LDV) was developed. A Michelson type interferometer which employed heterodyne signal process technique was built to measure the frequency and amplitude of vibration. The output signal of the fast photodetector was a frequency modulated signal centered at 40 MHz. The signal from the detector was amplified and downconverted to intermediate frequency centered at 1 MHz after mixing process. The voltage output that was proportional to the velocity of the moving surface(PZT) was obtained using PLL. The spectrum of the FM signal was analyzed and integration method was introduced to obtain amplitude information. This LDV can be used to measure the vibration of MEMS devices, automobiles, HDD and CDP.

  • PDF

Using Pulse-Front Tilt to Measure Laser Pulses Less Than 100 Picoseconds in Duration

  • Jeong, Hoon
    • Korean Journal of Optics and Photonics
    • /
    • v.26 no.6
    • /
    • pp.318-321
    • /
    • 2015
  • We demonstrate a frequency-resolved optical grating (FROG) device for measuring the intensity and phase versus time of several-tens-of-picoseconds laser pulses, using a thick nonlinear optical crystal. The huge pulse-front tilt generated by a holographic grating increases the temporal range of the device, which can make a single-shot measurement of laser pulses less than 100 ps in duration. To verify the measurement technique, we generate double pulses using a Michelson interferometer. The measured duration of a single pulse is about 300 fs and the measured maximum delay of two pulses is 60 ps, which implies that the proposed FROG device can measure laser pulses with maximum pulse width of about 120 ps.

CALCULATION OF TELLURIC ABSORPTION SPECTRA (지구 대기 흡수선 스펙트럼 계산)

  • Jeong, Gwanghui;Han, Inwoo;Lee, Byeong-Cheol
    • Publications of The Korean Astronomical Society
    • /
    • v.29 no.3
    • /
    • pp.35-44
    • /
    • 2014
  • In ground-based astronomical spectroscopic observations, there are many telluric absorption lines that are laid on the spectra of celestial objects. To study the physical properties of the celestial objects with these contaminated spectra, the telluric lines should be removed. A conventional method for removing the telluric lines is using the standard stellar spectrum as telluric line. In this paper, we introduce a technique to calculate synthetic telluric spectra and use them to remove telluric lines from a spectrum of a celestial object. We used Line-by-Line Radiative Transfer Model (LBLRTM) for calculating a synthetic spectrum and selected Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) model as atmospheric model. We apply our method to some spectra obtained by Bohyunsan Observatory Echelle Spectrograph (BOES) to show that the telluric lines are well removed from the observed spectra by our model within an accuracy of 2% which is close to the 1-sigma rms of the original spectra.

Basic Study for the fabrication of Laser Doppler Vibrometer for the Detection of Ultrasonic (초음파 측정용 레이저 도플러 진동계의 제작에 관한 연구)

  • Kim, Seung-Jong;Kim, Myoung-Sun;Kim, Ho-Seong
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.2195-2197
    • /
    • 2000
  • In order to detect the ultrasonic that is generated by the partial discharge of the heavy electric machinery a Laser Doppler Vibrometer (LDV) is developed. A Michelson type interferometer which employed heterodyne signal process technique is built to measure the frequency and amplitude of vibration. The output signal of the fast photodetector is a frequency modulated signal centered at 40 MHz. The signal from the detector is amplified and converted to intermediate frequency centered at 1 MHz after mixing process. The voltage output that is proportional to the velocity of the moving surface(PZT) is obtained using PLL. The spectrum of the FM signal is analyzed and integration method was introduced to obtain amplitude information. This LDV can be used to measure the vibration of MEMS devices, automobiles, HDD and CDP.

  • PDF

Single-longitudinal-mode unidirectional fiber laser using fiber Bragg grating (광섬유 브래그 격자를 이용한 단일 종모드 단방향 광섬유 레이저)

  • 이정찬;전영민;김명욱;김봉규;이상배;김상국;최상삼;이상선
    • Korean Journal of Optics and Photonics
    • /
    • v.10 no.3
    • /
    • pp.233-236
    • /
    • 1999
  • We have constructed a narrow-linewidth single-longitudinal-mode unidirectional $Er^{3+}$ -doped fiber laser using a fiber Bragg grating incorporated by a three port optical circulator with a compact configuration. Using a conventional delayed self-heterodyne detection technique with Mach-Zehnder interferometer a linewidth of 5 kHz was measured. In a single-longitudinal-mode operation, output power of up to 2.7 mW at 1548 nm were obtained for a launched pump power of 43 mW at 980 nm.

  • PDF

High-speed Microcantilever Resonance Testing on the Young's Modulus of a Nanoscale Titanium Film (고속 마이크로 외팔보 공진시험을 통한 나노스케일 티타늄 박막의 탄성계수 평가)

  • Kim, Yun Young
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.5
    • /
    • pp.392-397
    • /
    • 2017
  • The Young's modulus of a nanoscale titanium (Ti) thin-film was evaluated using a high-speed microcantilever resonating at the megahertz frequency in the present study. A 350 nm thick Ti film was deposited on the surface of a silicon microcantilever, and the morphology of the film was analyzed using the atomic force microscopy. The microcantilever was excited to resonate using an ultrasonic pulser that generates tone burst signals and the resonance frequency shift induced by the deposition of Ti was measured using a Michelson interferometer. The Young's modulus was determined through a modal analysis using the finite element method and the result was validated by the nanoindentation testing, showing good agreement within a relative error of 1.0%. The present study proposes a nanomechanical characterization technique with enhanced accuracy and sensitivity.

Ultra-precision Positioning By Using Coherence of White Light (백색광의 제한 간섭성을 이용한 초정밀 위치결정)

  • Park, Hyun-Goo;Kang, Min-Gu;Kim, Seung-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.6
    • /
    • pp.995-1001
    • /
    • 1997
  • In this paper, a new positioning method with incoherence of white light is described and practically implemented to attach VCR heads on a drum very accurately. This method utilizes the Michelson Interferometer which uses white light with short coherence length as the light source to generate interference fringes only in case the optical path difference is shorter than about 2.mu.m. The course position of VCR heads and the fine are determined by appearance and visibility of interference fringes, respectively. The appearance are detected by an image processing technique using FFT(Fast Fourier Transform).

Laser Ultrasonic Inspection of Environmental Barrier Coatings

  • Murray, T.W.;Balogun, O.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.6
    • /
    • pp.599-608
    • /
    • 2002
  • The mechanical properties of mullite $(3Al_2O_3\;2SiO_2)$ environmental barrier coatings are determined using a laser-based ultrasonic system. The waveforms generated by a laser source in mullite coatings in the $1-20{\mu}m$ thickness range are evaluated theoretically using the integral transform technique. It is shown that the laser source generated the two lowest order SAW modes in these systems. Experimental waveforms are generated using a 600ps pulsed Nd:YAG microchip laser and detected using a stabilized Michelson interferometer. The dispersion curves for the generated modes are extracted from the experimental data and the mechanical properties of the coatings are obtained by minimizing the error between the measured and calculated velocity values. The waveforms generated in mullite coatings agree well with theory and laser-based ultrasonics is shown to provide an effective tool for the nondestructive evaluation of ceramic coatings.

2-step Quadrature Phase-shifting Digital Holographic Optical Encryption using Orthogonal Polarization and Error Analysis

  • Gil, Sang Keun
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.354-364
    • /
    • 2012
  • In this paper, a new 2-step quadrature phase-shifting digital holographic optical encryption method using orthogonal polarization is proposed and tolerance errors for this method are analyzed. Unlike the conventional technique using a PZT mirror, the proposed optical setup comprises two input and output polarizers, and one ${\lambda}$/4-plate retarder. This method makes it easier to get a phase shift of ${\pi}$/2 without using a mechanically driven PZT device for phase-shifting and it simplifies the 2-step phase-shifting Mach-Zehnder interferometer setup for optical encryption. The decryption performance and tolerance error analysis for the proposed method are presented. Computer experiments show that the proposed method is an alternate candidate for 2-step quadrature phase-shifting digital holographic optical encryption applications.