• Title/Summary/Keyword: Interfering ions

Search Result 58, Processing Time 0.027 seconds

Spectrophotometric Determination of Lanthanide Ions by Flow Injection Analysis (Flow Injection Analysis에 의한 란탄족 이온들의 흡광광도 정량)

  • Kang, Sam-Woo;Cho, Kwang-Hee
    • Analytical Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.244-252
    • /
    • 1996
  • Spectrophotometric properties of lanthanide complexes with methylthymol blue(MTB) and cetyltrimethylammonium bromide(CTAB) were studied and also lanthanide(III) ions were determined by flow injection analysis on the base of the above results. The absorption maxima of lanthanide(III)-MTB complexes in the presence of CTAB are 635nm with molar absorptivity of $4.51{\sim}6.11{\times}10^4Lmol^{-1}cm^{-l}$ at pH 5.8. The mole ratio of lanthanide(III) complexes with MTB is 1:2 in the presence of CTAB. The calibration curves of lanthanide(III) ions obey the Beer's law in the range of 0.1 to 0.4ppm under the optimum condition. The samples throughput was ca. $60hr^{-1}$. The interfering effect of some cations and anions was investigated. The ligand anions such as tartrate and citrate, many transition and rare earth elements interfered severely and must be removed before the determination of lanthanide(III) ions.

  • PDF

Preconcentration, Separation and Determination of lead(II) with Methyl Thymol Blue Adsorbed on Activated Carbon Using Flame Atomic Absorption Spectrometry (불꽃원자 흡수 분광법으로 활성탄소에 흡착된 메틸티몰 블루로 납(II)의 예비농축, 분리 및 측정)

  • Ensafi, Ali A.;Ghaderi , Ali R.
    • Journal of the Korean Chemical Society
    • /
    • v.52 no.1
    • /
    • pp.16-22
    • /
    • 2008
  • on-line system for preconcentration and separation of lead(II) is presented. The method is based on the complex formation of Pb(II) with adsorbed Methyl thymol blue on activated carbon. The conditions of preparing the solid phase reagent and of quantitative recovery of Pb(II) from diluted solutions, such as acidity of aqueous phase, solid phase capacity, and flow variables were studied as well as effect of potential interfering ions. After preconcentration step, the metal ions are eluted automatically by 5 ml of 0.5 M HNO3 solution and the lead ions content was determined by flame atomic absorption spectrometry. Under the optimum conditions, the lead ions in aqueous samples were separated and preconcentrated about 1000-fold by the column. The detection limit was 0.001 g mL-1. Lead has been determined in river and tap water samples, with recovery of 98 to 102%.

Effect of Surfactants on the Electrochemical Performance of Cation-Selective Membrane Electrodes

  • Oh, Hyun-Joon;Cha, Geun-Sig;Nam, Hak-hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.1
    • /
    • pp.37-44
    • /
    • 2003
  • We examined the effect of polyether-type nonionic surfactants (Brij 35, Triton X-100, Tween 20 and Tween 80) on the potentiometric properties of sodium-, potassium- and calcium-selective membranes which are prepared with widely used ionophores and four kinds of polymer matrices [poly(vinyl chloride) (PVC), polyurethane (PU), PVC/PU blend, and silicone rubber (SR)]. It was found that the PVC-based membranes, which provide the best performance among all other matrix-based membranes in the absence of nonionic surfactants, exhibited larger change in their potentiometric properties when nonionic surfactants are added to the sample solution. On the other hand, the sodium-selective SR-based membrane with calix[4]arene, potassium-selective PVC/PU- or SR-based membrane with valinomycin, and the calcium-selective SR-based membrane with ETH 1001 provide almost identical analytical performance in the presence and absence of Tween 20 or Tween 80 surfactants. The origin of nonionic surfactants effect was also investigated by interpreting the experimental results obtained with various matrices and ionophores. The results suggest that the nonionic surfactant extracted into the membrane phase unselectively form complexes with the primary and interfering ions, resulting in increased background potential and lower binding ability for the ionophore. Such effects should result in deteriorated detection limits, reduced response slopes and lower selectivity for the primary ions.

Column Preconcentration and Determination of Cobalt(II)Using Silica Gel Loaded with 1-Nitroso-2-naphthol

  • Shin, Eun-Mi;Choi, Hee-Seon
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.7
    • /
    • pp.1516-1520
    • /
    • 2009
  • A sensitive technique for the determination of trace Co(II) in various samples after column preconcentration by adsorbing onto silica gel loaded with 1-nitroso-2-naphthol was developed. Several experimental conditions, such as pH of sample solution, the amount of silica gel loaded with 1-nitroso-2-naphthol, the flow rate for adsorption and so forth, were optimized. The interfering effects of diverse concomitant ions were investigated. Fe(III) interfered with more than any other ions, but the interference by Fe(III) was completely eliminated by adjusting the amount of silica gel loaded with 1-nitroso-2-naphthol to 0.30 g. The dynamic range, the correlation coefficient ($R^2$), and the detection limit obtained by the proposed technique were 3.0-140.0 ng m$L^{-1}$, 0.9942, and 1.81 ng m$L^{-1}$, respectively. For validating the technique, the aqueous samples (tap water, reservoir water, stream water, and wastewater) and the plastic samples were used as real samples. Recovery yields of 93.0-107.0% were obtained. These measured data were not different from ICP-MS data at the 95% confidence level by F test. Based on the results of the experiment, it has been found that the proposed technique can be applied to the determination of Co(II) in various real samples.

Determination of gold concentration in ore by ICP-AES with MIBK (ICP-AES와 MIBK 용매를 이용한 광물중의 금 분석)

  • Lim, Heon-Sung;Lee, Sueg-Geun
    • Analytical Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.496-501
    • /
    • 2007
  • The 242.795 nm on ICP-AES for the gold analysis was the most sensitive wavelength which was also interfered severely by the spectra of other metal ions such as manganese, chromium, cobalt, and iron. In order to analyze the gold in ore, the gold must be separated from the interfering ions. The best solvent for separation of gold in ore solution was 10 % n-hexane contained MIBK mixed solvent. The gold recovery was 97.5 % from mixed metal solution contained about 2 M $HNO_3$ and 0.5 M HCl.

Preparation of L-cysteine Salicylaldehyde Schiff-base Modified Macroporous Polystyrene Resin and Its Application to Determination of Trace Cadmium and Lead in Environmental Water Samples

  • Xie, Fazhi;Zhang, Fengjun;Xuan, Han;Ge, Yejun;Wang, Yin;Li, Guolian;Zhu, Lei;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.5
    • /
    • pp.472-476
    • /
    • 2014
  • In this work, a new method that utilizes L-cysteine salicylaldehyde Schiff-base modified macroporous polystyrene resin (PS-CSC) as an effective sorbent has been developed for preconcentration of trace cadmium and lead in environmental water samples. The effect of pH, the contact time, the elution conditions, the flow rate, the initial concentration of target metal ions, and the effects of interfering ions on the preconcentration of the analytes were investigated. The maximum adsorption capacity of PS-CSC under optimum conditions for cadmium and lead were found to be 6.03 - 18.17 mg/g and 12.58 - 36.13 mg/g when the initial concentration of metal ions between 5.0 - 90 mg/L. The limits of detection for cadmium and lead were 2.46 ng/L and $0.52{\mu}g/L$, with a preconcentration factor of 200. The developed method has been validated by analyzing certified reference material and successfully applied for the enrichment and determination of trace cadmium and lead from environmental water samples.

A Highly Selective Mercury(II) Ion-Selective Membrane Sensor (고 선택성 수은(II) 이온 막 센서)

  • Ensafi, Ali A.;Meghdadi, S.;Allafchian, Ali R.
    • Journal of the Korean Chemical Society
    • /
    • v.51 no.4
    • /
    • pp.324-330
    • /
    • 2007
  • A new ion selective PVC membrane electrode is developed as a sensor for mercury(II) ions based on bis(benzoylacetone) propylenediimine (H2(BA)2PD) as an ionophore. The electrode shows good response characteristics and displays, a linear Emf vs. log[Hg2+] response over the concentration range of 1.0×10-6 to 1.0×10-1 M Hg(II) with a Nernstian slope of 29.8±0.75 mV per decade and with a detection limit of 2.2×10-7 M Hg(II) over the pH range of 2.5-11.5. Selectivity concentrations for Hg(II) relative to a number of potential interfering ions were also investigated. The sensor is highly selective for Hg(II) ions over a large number of cations with different charge. The sensor has been found to be chemically inert showing a fast response time of 60 s and was used over a period of 3 months with a good reproducibility (S = 0.27 mV). The electrode was successfully applied to determine mercury(II) in real samples with satisfactory results.

Investigation of the Effect of Solution Acidity and Organic Additives on the Electrodeposition of Trivalent Chromium Ions (3가크롬 이온의 전착 반응에 용액 산도 및 유기물 첨가제가 미치는 영향 연구)

  • Lee, Joo-Yul;Van Phuong, Nguyen;Kang, Dae-Keun;Kim, Man;Kwon, Sik-Chol
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.6
    • /
    • pp.297-303
    • /
    • 2010
  • The effect of solution acidity and organic additives, polyethylene glycol (PEG), on the trivalent chromium electroplating was systematically investigated in the view point of electroreduction of trivalent chromium ions and solution stability. It was found that solution acidity controlled at pH 2.5 showed the widest current range for bright electrodeposits in the presence of PEG additives, which reduced the local current intensification at high current densities. Through complex interaction between PEG additives and hydrogen ion, that is, solution acidity, electrode potential was moved in the negative direction in the bulk solution, while it shifted in the positive when electric potential was scanned. In conjunction with electrochemical quartz crystal microbalance (EQCM), it was found that PEG additives had a role in promoting the electron transfer to trivalent chromium ion complexes in bulk solution and their adsorption at the electrode surface as well as interfering with hydrogen ion reduction process below pH 2.5. The PEG additives developed the nodular morphology during electroreduction of trivalent chromium ions with the increase of solution acidity and enhanced its current efficiency by maintaining the consumption of complexant, formic acid, at low speed.

Novel Solid Phase Extraction Procedure for Some Trace Elements in Various Samples Prior to Their Determinations by FAAS

  • Sacmaci, Srife;Kartal, Senol;Sacmaci, Mustafa;Soykan, Cengiz
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.444-450
    • /
    • 2011
  • A novel method that utilizes poly(5-methyl-2-thiozyl methacrylamide-co-2-acrylamido-2-methyl-1-propanesulfonic acid-co-divinylbenzene) [MTMAAm/AMPS/DVB] as a solid-phase extractant was developed for simultaneous preconcentration of trace Cd(II), Co(II), Cr(III), Cu(II), Fe(III), Mn(II), Ni(II), Pb(II), and Zn(II) prior to the measurement by flame atomic absorpiton spectrometry (FAAS). Experimental conditions for effective adsorption of the metal ions were optimized using column procedures. The optimum pH value for the simultaneously separation of the metal ions on the new adsorbent was 2.5. Effects of concentration and volume of elution solution, sample flow rate, sample volume and interfering ions on the recovery of the analytes were investigated. A high preconcentration factor, 100, and low relative standard deviation values, $\leq$1.5% (n = 10), were obtained. The detection limits (${\mu}gL^{-1}$) based on the 3s criterion were 0.18 for Cd(II), 0.11 for Co(II), 0.07 for Cr(III), 0.12 for Cu(II), 0.18 for Fe(III), 0.67 for Mn(II), 0.13 for Ni(II), 0.06 for Pb(II), and 0.09 for Zn(II). The validation of the procedure was performed by the analysis of two certified reference materials. The presented method was applied to the determination of the analytes in various environmental samples with satisfactory results.

Determination of Cadmium Ions by Designing an Optode Based on Immobilization of Dithizone on a Triacetylecelluose Membrane in Polluted Soil and Water Samples

  • Tavallali, Hossein;Kazempourfard, Fatemeh
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.2
    • /
    • pp.144-151
    • /
    • 2009
  • An optode for cadmium ion determination has been designed by immobilization of dithizone on triacetylcellose membrane. When the optode membrane is introduced into a real samples containing cadmium, there is a color change from green to red, making it possible to use the change in absorbance at 611 nm as the analytical signal. The sensor could be used in the range of 0.3-3 ${\mu}g\;ml^{-1}$ (2.67-26.67 ${\mu}M$) of $Cd^{2+}$ ions with a limit of detection of 0.025 ${\mu}g\;ml^{-1}$ (25 ng $ml^{-1}$). The response time of optode is within 15 min depending on the concentration of $Cd^{2+}$ ions. It can be easily and completely regenerated by dilute EDTA solution. The effect of different possible interfering species has been examined and was shown the optode has a good selectivity. The results obtained for the determination of cadmium ion in polluted soil and water samples using the proposed optode was found to be comparable with the well-established atomic absorption method.