• Title/Summary/Keyword: Interfacial morphology

Search Result 166, Processing Time 0.023 seconds

Characteristics of Biodegradable Blends of PBAST and Chemically Modified Thermoplastic Starch (생분해성 PBAST와 변형 열가소성 전분 블렌드의 특성)

  • Shin, Boo-Young
    • Polymer(Korea)
    • /
    • v.35 no.6
    • /
    • pp.580-585
    • /
    • 2011
  • This article aims to enhance the biodegradability and environment-friendliness of petroleum based biodegradable poly(butylene adipate-co-succinate-co-terephthalate)(PBAST) by blending chemically modified thermoplastic starch(CMPS). CMPS is a kind of bio-based biodegradable resin which is manufactured by reacting starch with maleic anhydride(MA) in the presence of a plasticizer and a free radical initiator. The characteristic properties of PBAST/CMPS blends were investigated by observing their morphology, thermal, mechanical properties, and biodegradability. The good interfacial adhesion between the phases examined by SEM revealed that PBAST/CMPS blends were compatible blends. The tensile strength and elongation decreased with increasing CMPS content, while modulus increased. The biodegradability of the blends was much higher than that of pristine PBAST and increased with increasing CMPS contents.

Interfacial Microstructure Evolution between Liquid Au-Sn Solder and Ni Substrate (액상 Au-Sn 솔더와 Ni 기판의 계면현상에 대한 고찰)

  • Kim Sung Soo;Kim Jong Hoon;Jeong Sang Won;Lee Hyuck Mo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.3 s.32
    • /
    • pp.47-53
    • /
    • 2004
  • Eutectic Au-20Sn(compositions are all in weight percent unless specified otherwise) solder alloys were soldered on the Ni substrate with various time and temperature. The composition, phase identification and morphology of intermetallic compounds(IMC) at the interface were examined using Scanning Electron Microscopy(SEM). There were two types of IMCs, $(Au,Ni)_3Sn_2$ and $(Au,Ni)_3Sn$ at the interface. The transition in morphology of $(Au,Ni)_3Sn_2$ has been observed at $300{\~}400^{\circ}C$. The morphology transition of $(Au,Ni)_3Sn_2$ is due to the decrease of enthalpy of formation of $(Au,Ni)_3Sn_2$ phase and has been explained well by Jackson's parameter with temperature. Because the number of diffusion channel is different at each soldering temperature, IMC thickness is nearly same at all temperature.

  • PDF

Morphological evolution of ZnO nanowires using varioussubstrates

  • Kar, J.P.;DAS, S.N.;Choi, J.H.;Myoung, J.M.
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.27.1-27.1
    • /
    • 2009
  • In recent years, ZnO nanostructures have drawn considerable attentions for the development of futuristic electronic devices due to their superior structural and optical properties. As the growth of ZnO nanowires by MOCVD is a bottom-up technique, the nature of substrates has a vital role for the dimension and alignment of the nanowires. However, in the pursuit of next generation ZnO based nanodevices, it would be highly preferred if well-ordered ZnO nanowires could be obtained on various substrates like sapphire, silicon, glass etc. Vertically aligned nanowires were grown on A and C-plane sapphire substrates, where as nanopencils were obtained on R-plane sapphire substrates. In addition, C-axis oriented vertical nanowires were also found using an interfacial layer(aluminum nitride film) on silicon substrates. On the other hand, long nanowires were found on Ga-doped ZnO film on glass substrates. Structural and optical properties of the ZnO nanowires on various substrates were also investigated.

  • PDF

Formation Characteristics of Environment Friendly Electrodeposit Films Formed in Natural and Synthetic Seawater Conditions (천연 및 인공해수를 이용하여 제작한 환경친화적인 전착코팅막의 형성 특성)

  • 이명훈;이찬식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.6
    • /
    • pp.1000-1009
    • /
    • 2004
  • The environment friendly calcareous deposit films were formed on steel plates by electrodeposition technique in natural seawater and synthetic solutions such as dissolved $\textrm{Mg}^{2+}$ and $\textrm{Ca}^{2+}$ ions at various potential conditions. The influence of potential conditions on composition ratio, structure and morphology of the electrodeposited films were investigated by scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS) and X-ray diffractor (XRD). Accordingly, this study was provided a better understanding of the composition between the growth of $\textrm{Mg(OH)}_2$ and that of $\textrm{CaCO}_3$ during the formation of calcareous deposit films on steel substrate under cathodically electrodeposition in synthetic and natural seawater. The results showed that the formation of good overall calcareous deposited film in seawater can be achieved by controlling the Ca/Mg ratio according to interfacial pH with the effective use of the electro deposition technique.

Metal induced crystallization of amorphous silicon using metal solution

  • Yoon, Soo-Young;Oh, Jae-Young;Kim, Chae-Ok;Jang, Jin
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.s1
    • /
    • pp.123-133
    • /
    • 1998
  • Amorphous silicon (a-Si) was crystallized by metal induced crystallization using metal solution. The a-Si films spin coated with a 50,000 ppm Ni solution were crystallized at as low as $500^{\circ}C$. Needlelike morphology, developed as a result of the migration of $NiSi_2$, precipitates, appears in the MIC poly-Si. The growth of the needlelike crystallites proceeds to a direction parallel to (111). The crystallization temperature can be lowered to $450^{\circ}C$ by Au addition. The enhancement of crystallization results from the decrease of interfacial energy at the NiSi2/Si interface by Au addition.

  • PDF

Core-Shell Polymerization with Hydrophilic Polymer Cores

  • Park, Jong-Myung
    • Macromolecular Research
    • /
    • v.9 no.1
    • /
    • pp.51-65
    • /
    • 2001
  • Two-stage emulsion polymerizations of hydrophobic monomers on hydrophilic seed polymer particles were carried out to make core-shell composite particles. It was found that the loci of polymerization in the second stage were the surface layer of the hydrophilic seed latex particles, and that it has resulted in the formation of either eccentric core-shell particles with the core exposed to the aqueous phase or aggregated nonspherical composite particles with the shell attached on the seed surface as many small separated particles. The driving force of these phenomena is related to the gain in free energy of the system in going from the hydrophobic polymer-water interface to hydrophilic polymer-water interface. Thermodynamic analysis of the present polymerization system, which was based on spreading coefficients, supported the likely occurrence of such nonspherical particles due to the combined effects of interfacial free energies and phase separation between the two polymer phases. A hypothetical pathway was proposed to prepare hydrophilic core-hydrophobic shell composite latex particles, which is based on the concept of opposing driving and resistance forces for the phase migration. It was found that the viscosity of the monomer-swollen polymer phase played important role in the formation of particle morphology.

  • PDF

Preparation of Polyurea Microcapsules Containing Phase Change Material and their Application on Fiber Composites (상전이물질을 함유한 폴리우레아 마이크로캡슐의 제조와 섬유복합소재에의 적용)

  • Kim, Hea-In;Jin, Xuan-Zhen;Choi, Hae-Wook;Park, Soo-Min
    • Textile Coloration and Finishing
    • /
    • v.19 no.1 s.92
    • /
    • pp.37-44
    • /
    • 2007
  • In this study, for textile use, the octadecane of phase change materials(PCM) was encapsulated in several micro-diameter shell which prevents leakage of the material during its liquid phase. Microencapsulated PCM(PM) was prepared with the different weight ratio of core material to wall material and by interfacial polymerization methods using polyurea as shell material. Phase stability for O/W emulsion of PCM and PVA aq. (PE) was evaluated by Turbiscan Lab. The capsule formation win identified using FT-IR. Physical properties of microcapsules including diameter, particle distribution, morphology were investigated. Thermal transport properties of suede treated with PM(SPM) were determined by KES-F7 system.

Effect of Particle Size on the Mechanical and Electrical Properties of Epoxy/Spherical Silica Composites

  • Park, Jae-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.1
    • /
    • pp.39-42
    • /
    • 2013
  • The effects of particle size on the mechanical and electrical properties of epoxy/spherical silica composites were studied. The silica particle sizes were varied from 5 to 30 ${\mu}m$ and the filler content was fixed to 60 wt%. Tensile and flexural tests were carried out and the interfacial morphology was observed by scanning electron microscopy (SEM). The electrical insulation breakdown strength was estimated using sphere-sphere electrodes with different insulation thicknesses of 1, 2 and 3 mm. The tensile strength and flexural strength increased with decreasing particle size, while electrical insulation breakdown strength increased with increasing particle size.

Effect of Dynamic Flow on the Structure of Inhibition Layer in Hot-dip Galvanizing

  • Jin, Young Sool;Kim, Myung Soo;Kim, Su Young;Paik, Doo Jin
    • Corrosion Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.30-36
    • /
    • 2011
  • The effect of dynamic flow or forced convection were investigated and compared on the formation of inhibition layer, galvanizing and galvannealing reactions through the hot-dip galvanizing simulator with the oscillation of specimen in zinc bath, continuous galvanizing pilot plant with zinc pumping system through the snout and continuous galvanizing operation with Dynamic $Galvanizing^{TR}$ system. The interfacial Al pick-up was not consistent between the results of simulator, pilot plant and line operation, but the morphology of inhibition layer became compact and refined by the forced convection. The growth of Fe-Zn intermetallics at the interface was inhibited by the forced convection, whereas the galvannealing rate would be a little promoted.

Sol-Gel Synthesis and Transport Properties of $La_{2/3}Sr_{1/3}Mn_{0.99}{^{57}}Fe_{0.01}O_3$Granular Thin Films

  • Shim, In-Bo;Kim, Sung-Baek;Ahn, Geun-Young;Yun, Sung-Roe;Cho, Young-Suk;Kim, Chul-Sung
    • Journal of Magnetics
    • /
    • v.6 no.1
    • /
    • pp.1-4
    • /
    • 2001
  • We have used acetic acids ethanol and distilled water as a solvent to synthesize $La_{2/3}Sr_{1/3}Mn_{0.99}{^{57}}Fe_{0.01}O_3$(LSMFO) precursor. Crack-free LSMFO granular polycrystalline thin films have been deposited on thermally oxidized silicon substrates by spin coaling. The dependence of crystallization, surface morphology, magnetic and transport properties on annealing temperature was investigated. With increasing annealing temperature, the metal-semiconductor (insulator) transition temperature and the magnetic moment decrease while the resistivity increases. The lattice constants remain almost unchanged. For LSMFO thin films, spin-dependent interfacial tunneling and/or scattering magnetoresistance were observed. Our results indicate that the annealing temperature is very important in determining the intrinsic and extrinsic magnetotransport properties.

  • PDF