• Title/Summary/Keyword: Interfacial fracture energy

Search Result 94, Processing Time 0.022 seconds

Fabrication and Impact Properties of $Nb/MoSi_2-ZrO_2$ Laminate Composites ($Nb/MoSi_2-ZrO_2$ 적층복합재료의 제조 및 충격특성)

  • Lee, Sang-Pill;Yoon, Han-Ki;Kong, Yoo-Sik
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.29-34
    • /
    • 2002
  • [ $Nb/MoSi_2-ZrO_2$ ] laminate composites have been successfully fabricated by alternately stacking $MoSi_2-ZrO_2$ powder layer and Nb sheet, followed by hot pressing in a graphite mould. The fabricating parameters were selected as hot press temperatures. The instrumented Charpy impact test was carried out at the room temperature in order to investigate the relationship between impact properties and fabricating temperatures. The interfacial shear strength between $MoSi_2-ZrO_2$ and Nb, which is associated with the fabricating temperature and the growth of interfacial reaction layer, is also discussed. The plastic deformation of Nb sheet and the interfacial delamination were macroscopically observed. The $Nb/MoSi_2-ZrO_2$ laminate composites had the maximum impact value when fabricated at 1623K, accompanying the increase of fracture displacement and crack propagation energy. The interfacial shear strength of $Nb/MoSi_2-ZrO_2$ laminate composites increased with the growth of interfacial reaction layer, which resulted from the increase of fabricating temperature. there is an appropriate interfacial shear strength for the enhancement of impact value of $Nb/MoSi_2-ZrO_2$ laminate composites. A large increase of interfacial shear strength restrains the plastic deformation of Nb sheet.

  • PDF

A Study on Mode II Interlaminar Fracture Toughness of Hybrid Composites (하이브리드 복합재료의 모드II 층간파괴인성치에 관한 연구)

  • 김형진;박명일;곽대원;김재동;고성위
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.4
    • /
    • pp.42-47
    • /
    • 2002
  • This paper describes the effect of loading rate, specimen geometries and material properties for Mode II interlaminar fracture toughness of hybrid composite by using end notched flexure(ENF) specimen. In the range of loading rate 0.5~2mm/min, there is found to be no significant effect of loading rate with the value of critical energy release rate( $G_{IIc}$). there is no dependence of the interlaminar fracture energy upon the specimen width over the specimen widths examined. The value of $G_{IIc}$ for variation of initial crack length are nearly similiar values when material properties are CF/CF and GF/GF, however, the value of $G_{IIc}$ are highest with the increasing intial crack length at CF/GF. The values of $G_{IIc}$ for variation material properties are higher with the increasing moulding pressure when moulding pressures are 307, 431, 585㎪. The SEM photographs show good fiber distribution and interfacial bonding of hybrid composites when the moulding is the CF/GF.e CF/GF.

Intermediate crack-induced debonding analysis for RC beams strengthened with FRP plates

  • Wantanasiri, Peelak;Lenwari, Akhrawat
    • Structural Engineering and Mechanics
    • /
    • v.56 no.3
    • /
    • pp.473-490
    • /
    • 2015
  • This paper presents the analysis of intermediate crack-induced (IC) debonding failure loads for reinforced concrete (RC) beams strengthened with adhesively-bonded fiber-reinforced polymer (FRP) plates or sheets. The analysis consists of the energy release and simple ACI methods. In the energy release method, a fracture criterion is employed to predict the debonding loads. The interfacial fracture energy that indicates the resistance to debonding is related to the bond-slip relationships obtained from the shear test of FRP-to-concrete bonded joints. The section analysis that considers the effect of concrete's tension stiffening is employed to develop the moment-curvature relationships of the FRP-strengthened sections. In the ACI method, the onset of debonding is assumed when the FRP strain reaches the debonding strain limit. The tension stiffening effect is neglected in developing a moment-curvature relationship. For a comparison purpose, both methods are used to numerically investigate the effects of relevant parameters on the IC debonding failure loads. The results show that the debonding failure load generally increases as the concrete compressive strength, FRP reinforcement ratio, FRP elastic modulus and steel reinforcement ratio increase.

Effect of Bonding Surface Laser Patterns on Interfacial Toughness of GFRP/Al Composite (GFRP/Al 복합재료의 접합부 레이저 패턴이 계면인성에 미치는 영향)

  • Woo Yong Sim;Yu Seong Yun;Oh Heon Kwon
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.2
    • /
    • pp.1-7
    • /
    • 2023
  • Fiber-metal laminates (FMLs) and polymer matrix composites (PMCs) are formed in various ways. In particular, FMLs in which aluminum is laminated as a reinforced layer are widely used. Also, glass fiber-reinforced plastics (GFRPs) are generally applied as fiber laminates. The bonding interface layer between the aluminum and fiber laminate exhibits low strength when subjected to hot press fabrication in the event of delamination fracture at the interface. This study presents a simple method for strengthening the interface bonding between the aluminum metal and GFRP layer of FML composites. The surfaces of the aluminum interface layer are engraved with three kinds of patterns by using the laser machine before the hot press works. Furthermore, the effect of the laser patterns on the interfacial toughness is investigated. The interfacial toughness was evaluated by the energy release rate (G) using an asymmetric double cantilever bending specimen (ADCB). From the experimental results, it was shown that the strip type pattern (STP) has the most proper pattern shape in GFRP/Al FML composites. Therefore, this will be considered a useful method for the safety assessment of FML composite structures.

Failure characteristics of combined coal-rock with different interfacial angles

  • Zhao, Tong-Bin;Guo, Wei-Yao;Lu, Cai-Ping;Zhao, Guang-Ming
    • Geomechanics and Engineering
    • /
    • v.11 no.3
    • /
    • pp.345-359
    • /
    • 2016
  • In order to investigate the influence of the interfacial angel on failure characteristics and mechanism of combined coal-rock mass, 35 uniaxial/biaxial compressive simulation tests with 5 different interfacial angels of combined coal-rock samples were conducted by PFC2D software. The following conclusions are drawn: (1) The compressive strength and cohesion decrease with the increase of interfacial angle, which is defined as the angle between structure plane and the exterior normal of maximum principal plane, while the changes of elastic modulus and internal friction angle are not obvious; (2) The impact energy index $K_E$ decreases with the increase of interfacial angle, and the slip failure of the interface can be predicted based on whether the number of acoustic emission (AE) hits has multiple peaks or not; (3) There are four typical failure patterns for combined coal-rock samples including I (V-shaped shear failure of coal), II (single-fracture shear failure of coal), III (shear failure of rock and coal), and IV (slip rupture of interface); and (4) A positive correlation between interfacial angle and interface effect is shown obviously, and the interfacial angle can be divided into weak-influencing scope ($0-15^{\circ}$), moderate-influencing scope ($15-45^{\circ}$), and strong-influencing scope (> $45^{\circ}$), respectively. However, the confining pressure has a certain constraint effect on the interface effect.

Comparison of Quantitative Interfacial Adhesion Energy Measurement Method between Copper RDL and WPR Dielectric Interface for FOWLP Applications (FOWLP 적용을 위한 Cu 재배선과 WPR 절연층 계면의 정량적 계면접착에너지 측정방법 비교 평가)

  • Kim, Gahui;Lee, Jina;Park, Se-hoon;Kang, Sumin;Kim, Taek-Soo;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.2
    • /
    • pp.41-48
    • /
    • 2018
  • The quantitative interfacial adhesion energy measurement method of copper redistribution layer and WPR dielectric interface were investigated using $90^{\circ}$ peel test, 4-point bending test, double cantilever beam (DCB) measurement for FOWLP Applications. Measured interfacial adhesion energy values of all three methods were higher than $5J/m^2$, which is considered as a minimum criterion for reliable Cu/low-k integration with CMP processes without delamination. Measured energy values increase with increasing phase angle, that is, in order of DCB, 4-point bending test, and $90^{\circ}$ peel test due to increasing roughness-related shielding and plastic energy dissipation effects, which match well interfacial fracture mechanics theory. Considering adhesion specimen preparation process, phase angle, measurement accuracy and bonding energy levels, both DCB and 4-point bending test methods are recommended for quantitative adhesion energy measurement of RDL interface depending on the real application situations.

Mechanical Properties of Cement Mortar: Development of Structure-Property Relationships

  • Ghebrab, Tewodros Tekeste;Soroushian, Parviz
    • International Journal of Concrete Structures and Materials
    • /
    • v.5 no.1
    • /
    • pp.3-10
    • /
    • 2011
  • Theoretical models for prediction of the mechanical properties of cement mortar are developed based on the morphology and interactions of cement hydration products, capillary pores and microcracks. The models account for intermolecular interactions involving the nano-scale calcium silicate hydrate (C-S-H) constituents of hydration products, and consider the effects of capillary pores as well as the microcracks within the hydrated cement paste and at the interfacial transition zone (ITZ). Cement mortar was modeled as a three-phase material composed of hydrated cement paste, fine aggregates and ITZ. The Hashin's bound model was used to predict the elastic modulus of mortar as a three-phase composite. Theoretical evaluation of fracture toughness indicated that the frictional pullout of fine aggregates makes major contribution to the fracture energy of cement mortar. Linear fracture mechanics principles were used to model the tensile strength of mortar. The predictions of theoretical models compared reasonably with empirical values.

An Experimental Study of Bond Stress between Concrete and Various Kinds of FRP Plank used as a Permanent Formwork (영구거푸집으로 활용한 FRP 판의 종류에 따른 콘크리트와의 부착응력에 관한 실험적 연구)

  • Park, Chan-Young;Yoo, Seung-Woon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.3
    • /
    • pp.92-103
    • /
    • 2015
  • Development of new concrete bridge deck system with FRP plank using as a permanent formwork and the main tensile reinforcement recently has been actively conducted. Concurrent use as a reinforcing material and a permanent formwork, it is possible to reduce the construction time and construction costs than the usual concrete slab. In this study, an experiment was carried out for the bond stress between cast-in-place concrete and the type of FRP plank using as a permanent formwork. The interfacial fracture energy that can be one of the most important parameters were evaluated for adhesion performance and bond stress to know the characteristics of the failure mechanism of the adhesion surface. Interfacial fracture energy of normal concrete is 0.24kN/m of GF11 case, in the case of GF21, 0.43kN/m appears, in the case of CF11 and GF31, 0.44kN/m and 0.46kN/m respectively it appeared. In case of RFCON, 0.52kN/m appears from GF12, the CF12 and GF22, 0.51kN/m and 0.36kN/m appeared each case.

Influence of Sizing Agent on Interfacial Adhesion and Mechanical Properties of Glass Fiber/Unsaturated Polyester Composites (사이징제에 따른 유리섬유/불포화 폴리에스터 복합재료의 계면 접착력과 기계적 물성)

  • 박수진;김택진;이재락;홍성권;김영근
    • Polymer(Korea)
    • /
    • v.24 no.3
    • /
    • pp.326-332
    • /
    • 2000
  • The effects of sizing agent on the final mechanical properties of the glass fiber/unsaturated polyester composites were investigated by contact angle measurements at room temperature. In this work, glass fibers were coated by poly(vinyl alcohol), polyester, and epoxy type sizing agent and each property was compared. Contact angles of the sized glass fiber were measured by the wicking method based on Washburn equation using deionized water and diiodomethane as testing liquids. As an experimental result, the surface free energy calculated from contact angle showed the highest value in case of the glass fiber coated by epoxy sizing agent. From measurements of interlaminar shear strength (ILSS) and fracture toughness ( $K_{IC}$ ) of the composites, it was found that the sizing treatment on fibers could improve the fiber/matrix interfacial adhesion, resulting in growing the final mechanical properties. This was due to the enhanced surface free energy of glass fibers in a composite system.

  • PDF

A Study on the Preparation of the Eco-friendly Carbon Fibers-Reinforced Composites

  • Choi, Kyeong-Eun;Seo, Min-Kang
    • Carbon letters
    • /
    • v.14 no.1
    • /
    • pp.58-61
    • /
    • 2013
  • In this work, the effect of catalysts on the mechanical properties of carbon fibers-reinforced epoxy matrix composites cured by cationic latent thermal catalysts, i.e., N-benzylpyrazinium hexafluoroantimonate (BPH) was studied. Differential scanning calorimetry was executed for thermal characterization of the epoxy matrix system. Mechanical interfacial properties of the composites were studied by interlaminar shear strength (ILSS), critical stress intensity factor ($K_{IC}$), and specific fracture energy ($G_{IC}$). As a result, the conversion of neat epoxy matrix cured by BPH was higher than that of one cured by diaminodiphenyl methane (DDM). The ILSS, $K_{IC}$, $G_{IC}$, and impact strength of the composites cured by BPH were also superior to those of the composites cured by DDM. This was probably the consequence of the effect of the substituted benzene group of BPH catalyst, resulting in an increase in the cross-link density and structural stability of the composites studied.