• Title/Summary/Keyword: Interfacial films

Search Result 251, Processing Time 0.025 seconds

Comparison of retention characteristics of ferroelectric capacitors with $Pb(Zr, Ti)O_3$ films deposited by various methods for high-density non-volatile memory.

  • Sangmin Shin;Mirko Hofmann;Lee, Yong-Kyun;Koo, June-Mo;Cho, Choong-Rae;Lee, June-Key;Park, Youngsoo;Lee, Kyu-Mann;Song, Yoon-Jong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.3 no.3
    • /
    • pp.132-138
    • /
    • 2003
  • We investigated the polarization retention characteristics of ferroelectric capacitors with $Pb(Zr,Ti)O_3$ (PZT) thin films which were fabricated by different deposition methods. In thermally-accelerated retention tests, PZT films which were prepared by a chemical solution deposition (CSD) method showed rapid decay of retained polarization charges as the thickness of the films decreased down to 100 nm, while the films which were grown by metal organic chemical vapor deposition (MOCVD) retained relatively large non-volatile charges at the corresponding thickness. We concluded that in the CSD-grown films, the thicker interfacial passive layer compared with the MOCVD-grown films had an unfavorable effect on retention behavior. We observed the existence of such interfacial layers by extrapolation of the total capacitance with thickness of the films and the capacitance of these layers was larger in MOCVD-grown films than in CSD-grown films. Due to incomplete compensation of surface polarization charges by the free charges in the metal electrodes, the interfacial field activated the space charges inside the interfacial layers and deposited them at the boundary between the ferroelectric layer and the interfacial layer. Such space charges built up an internal field inside the films, which interfered with domain wall motion, so that retention property at last became degraded. We observed less imprint which was a result of less internal field in MOCVD-grown films while large imprint was observed in CSD-grown films.

A Study on the Saturation of Grain Size in Pb(Zr, Ti)$O_3$ Thin Films (Pb(Zr, Ti)$O_3$ 박막에서 결정립 크기 포화 현상에 관한 연구)

  • 이장식;김찬수;주승기
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.6
    • /
    • pp.530-536
    • /
    • 2000
  • During the grain growth of the PZT thin films by selective nucleation method using PZT seed, it was found that the grain size was saturated with the annealing temperature. The saturation of grain size was analyzed by the interfacial energy which appeared during the crystallization. The factors affecting the saturation of grain size were found to be the interfacial energy between perovskite phase and pyrochlore phase, and PZT thin film and the bottom Pt electrode. When the ion damage was introduced to the grain-size saturated PZT thin films, further lateral growth was observed. Pt bottom electrode thickness was changed to control the interfacial energy between the PZT thin film and the Pt bottom electrode. When Pt thickness was increased, the grain size was also increased, because the lattice parameter of Pt films was increased with the thickness of the Pt films. The incubation time of nucleation was increased with the amount of the ion damage on the Pt films.

  • PDF

Role of ${\alpha}-Al_2O_3$ buffer layer in $Ba-ferrite/SiO$ magnetic thin films (Ba-페라이트/$SiO_2$ 자성박막에서 ${\alpha}-Al_2O_3$ buffer 층의 역할)

  • Cho, Tae-Sik;Jeong, Ji-Wook;Kwon, Ho-Jun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.267-270
    • /
    • 2003
  • We have studied the interfacial diffusion phenomena and the role of ${\alpha}-Al_2O_3$ buffer layer as a diffusion barrier in the $Ba-ferrite/SiO_2$ magnetic thin films for high-density recording media. In the interface of amorphous Ba-ferrite ($1900-{\AA}-thick)/SiO_2$ thin film during annealing, the interfacial diffusion started to occur at ${\sim}700^{\circ}C$. As the annealing temperature increased up to $800^{\circ}C$, the interfacial diffusion abruptly proceeded resulting in the high interface roughness and the deterioration of the magnetic properties. In order to control the interfacial diffusion at the high temperature, we introduced ${\alpha}-Al_2O_3$ buffer layer ($110-{\AA}-thick$) in the interface of $Ba-ferrite/SiO_2$ thin film. During the annealing of $Ba-ferrite/{\alpha}-Al_2O_3/SiO_2$ thin film even at ${\sim}800^{\circ}C$, the interface was very smooth. The smooth interface of the film was also clearly shown by the cross-sectional FESEM. The magnetic properties, such as saturation magnetization 3nd intrinsic coercivity, were also enhanced, due to the inhibition of interfacial diffusion by the ${\alpha}-Al_2O_3$ buffer layer. Our study suggests that the ${\alpha}-Al_2O_3$ buffer layer act as a useful interfacial diffusion barrier in the $Ba-ferrite/SiO_2$ thin films.

  • PDF

Interfacial Characteristics of $\beta$-SiC Film Growth on (100) Si by LPCVD Using MTS (MTS를 사용한 LPCVD 법에 의한 (100)Si 위의 $\beta$-SiC 증착 및 계면특성)

  • 최두진;김준우
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.8
    • /
    • pp.825-833
    • /
    • 1997
  • Silicon carbide films were deposited by low pressure chemical vapor deposition(LPCVD) using MTS(CH3SICl3) in hydrogen atmosphere on (100) Si substrate. To prevent the unstable interface from being formed on the substrate, the experiments were performed through three deposition processes which were the deposition on 1) as received Si, 2) low temperature grown SiC, and 3) carbonized Si by C2H2. The microstructure of the interface between Si substrates and SiC films was observed by SEM and the adhesion between Si substrates and SiC films was measured through scratch test. The SiC films deposited on the low temperature grown SiC thin films, showed the stable interfacial structures. The interface of the SiC films deposited on carbonized Si, however, was more stable and showed better adhesion than the others. In the case of the low temperature growth process, the optimum condition was 120$0^{\circ}C$ on carbonized Si by 3% C2H2, at 105$0^{\circ}C$, 5 torr, 10 min, showed the most stable interface. As a result of XRD analysis, it was observed that the preferred orientation of (200) plane was increased with Si carbonization. On the basis of the experimental results, the models of defect formation in the process of each deposition were compared.

  • PDF

Interfacial Layer Control in DSSC

  • Lee, Wan-In
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.75-75
    • /
    • 2011
  • Recently, dye-sensitized solar cell (DSSC) attracts great attention as a promising alternative to conventional silicon solar cells. One of the key components for the DSSC would be the nanocrystalline TiO2 electrode, and the control of interface between TiO2 and TCO is a highly important issue in improving the photovoltaic conversion efficiency. In this work, we applied various interfacial layers, and analyzed their effect in enhancing photovoltaic properties. In overall, introduction of interfacial layers increased both the Voc and Jsc, since the back-reaction of electrons from TCO to electrolyte could be blocked. First, several metal oxides with different band gaps and positions were employed as interfacial layer. SnO2, TiO2, and ZrO2 nanoparticles in the size of 3-5 nm have been synthesized. Among them, the interfacial layer of SnO2, which has lower flat-band potential than that of TiO2, exhibited the best performance in increasing the photovoltaic efficiency of DSSC. Second, long-range ordered cubic mesoporous TiO2 films, prepared by using triblock copolymer-templated sol-gel method via evaporation-induced self-assembly (EISA) process, were utilized as an interfacial layer. Mesoporous TiO2 films seem to be one of the best interfacial layers, due to their additional effect, improving the adhesion to TCO and showing an anti-reflective effect. Third, we handled the issues related to the optimum thickness of interfacial layers. It was also found that in fabricating DSSC at low temperature, the role of interfacial layer turned out to be a lot more important. The self-assembled interfacial layer fabricated at room temperature leads to the efficient transport of photo-injected electrons from TiO2 to TCO, as well as blocking the back-reaction from TCO to I3-. As a result, fill factor (FF) was remarkably increased, as well as increase in Voc and Jsc.

  • PDF

Effect of Non-lattice Oxygen Concentration on Non-linear Interfacial Resistive Switching Characteristic in Ultra-thin HfO2 Films

  • Kim, Yeong-Jae;Kim, Jong-Gi;Mok, In-Su;Lee, Gyu-Min;Son, Hyeon-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.359-360
    • /
    • 2013
  • The effect of electrode and deposition methods on non-linear interfacial resistive switching in HfO2 based $250{\times}250$ nm2 cross-point device was studied. HfO2 based device has the interfacial resistive switching properties of non-linearity and self-compliance current switching. The operating current in HfO2 based device was increased with negatively increasing the heat of formation energy in top electrode. Also, it was investigated that the operating current in HfO2 based device was changed with deposition methods of O3 reactant ALD, H2O reactant ALD and dc reactive sputtering, resulting the magnitude of the operating current and on/off ratio in order of HfO2 films deposited by dc reactive sputtering, H2O reactant ALD, and O3 reactant ALD. To investigate the effect of electrode and deposition methods on operating current of non-linear interfacial resistive switching in the cross-point device, X-ray photoelectron spectroscopy was measured. Through the analysis of O 1s spectra, non-lattice oxygen concentration, which is closely related to oxygen vacancies, was increased in order of Pt, TiN, and Ti top electrodes and in order of O3 reactant ALD, H2O reactant ALD, and O3 reactant ALD, and dc reactive sputtering deposition method. From all results, non-lattice oxygen concentration in ultra-thin HfO2 films play a crucial role in the operating current and memory states (LRS & HRS) in the non-linear interfacial resistive switching.

  • PDF

Carbonate Crystal Growth Controlled by Interfacial Interations of Artifical Cell Membranes

  • Goh, Dai-Young;Ahn, Dong-June
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.2 no.2
    • /
    • pp.109-112
    • /
    • 1997
  • Morphology of carbonate crystals grown on the surface of artificial cell membranes was controlled by changing the interfacial chemistry. For octadecyltriethoxysilane (OTE) films with terminal methyl groups interacting little with an aqueous calcium carbonate solution calcite (104) crystals were formed. Polymerized pentacosadiynoic acid (PDA) films with terminal carboxylic acid groups induced deposition of calcite (012) crystals aligned along with each other within a polymer domain. On the other hand, stearyl alcohol (StOH) films with terminal hydroxyl groups induced deposition of aragonite crystals. When PDA was mixed with StOH, the 8:1 PDA:StOH (molar ratio) film produced dominating calcite (012) crystals without any crystal alignment, and the 4:1 mixture film produced minor calcite (012) crystals and major aragonite crystals. For the 2:1, 1:1, 1:2, and 1:4 mixture films, aragonite crystals were dominating. Hence, it is found that the chemical composition at the interface plays a very important role in controlling the morphology of deposited carbonate crystals.

  • PDF

Crystallographic and Interfacial Characterization of Al2O3 and ZrO2 Dielectric Films Prepared by Atomic Layer Chemical Vapor Deposition on the Si Substrate (Si 기판에서 원자층 화학 기상 증착법으로 제조된 Al2O3 및 ZrO2 유전 박막의 결정학적 특성 및 계면 구조 평가)

  • Kim, Joong-Jung;Yang, Jun-Mo;Lim, Kwan-Yong;Cho, Heung-Jae;Kim, Won;Park, Ju-Chul;Lee, Soun-Young;Kim, Jeong-Sun;Kim, Geun-Hong;Park, Dae-Gyu
    • Korean Journal of Materials Research
    • /
    • v.13 no.8
    • /
    • pp.497-502
    • /
    • 2003
  • Crystallographic characteristics and interfacial structures of $Al_2$$O_3$and $ZrO_2$dielectric films prepared by atomic layer chemical vapor deposition (ALCVD) were investigated at atomic scale by high-resolution transmission electron microscopy (HRTEM) and energy dispersive X-ray spectroscopy (EDS)/electron energy-loss spectroscopy (EELS) coupled with a field-emission transmission electron microscope. The results obtained from cross-sectional and plan-view specimens showed that the $Al_2$$O_3$film was crystallized by annealing at a high temperature and its crystal system might be evaluated as either cubic or tetragonal phase. Whereas the $ZrO_2$film crystallized during deposition at a low temperature of ∼$300^{\circ}C$ was composed of both tetragonal and monoclinic phase. The interfacial thickness in both films was increased with the increased annealing temperature. Further, the interfacial structures of X$ZrO_2$$O_3$and $ZrO_2$films were discussed through analyses of EDS elemental maps and EELS spectra obtained from the annealed films, respectively.

Thermal Instability of La0.6Sr0.4MnO3 Thin Films on Fused Silica

  • Sun, Ho-Jung
    • Korean Journal of Materials Research
    • /
    • v.21 no.9
    • /
    • pp.482-485
    • /
    • 2011
  • $La_{0.6}Sr_{0.4}MnO_3$ (LSMO) thin films, which are known as colossal magnetoresistance materials, were prepared on fused silica thin films by conventional RF magnetron sputtering, and the interfacial reactions between them were investigated by rapid thermal processing. Various analyses, namely, X-ray diffraction, transmission electron microscopy combined with energy adispersive X-ray spectrometry, and secondary ion mass spectrometry, were performed to explain the mechanism of the interfacial reactions. In the case of an LSMO film annealed at $800^{\circ}C$, the layer distinction against the underplayed $SiO_2$ was well preserved. However, when the annealing temperature was raised to $900^{\circ}C$, interdiffusion and interreaction occurred. Most of the $SiO_2$ and part of the LSMO became amorphous silicate that incorporated La, Sr, and Mn and contained a lot of bubbles. When the annealing temperature was raised to $950^{\circ}C$, the whole stack became an amorphous silicate layer with expanded bubbles. The thermal instability of LSMO on fused silica should be an important consideration when LSMO is integrated into Si-based solid-state devices.

An Improved Heat Transfer Prediction Model for Turbulent Falling Liquid Films with or Without Interfacial Shear (계면 전단응력이 있을 때와 없을 때 하강하는 난류액막에 대한 개선된 열전달 예측 모델)

  • Park, Seok-Jeong;Chun, Moon-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.189-202
    • /
    • 1995
  • An improved method is presented for the prediction of heat transfer coefficients in turbulent fall-ing liquid films with or without interfacial shear for both heating or condensation. A modified Mudawwar and El-Masri's semi-empirical turbulence model, particularly to extend its use for the turbulent falling film with high interfacial shear, is used to replace the eddy viscosity model incorporated in the unified approach unposed by Yih and Liu. The liquid film thickness and asymptotic heat transfer coefficients against the film Reynolds number for wide range of interfacial shear predicted by both present and existing methods are compared with experimental data. The results show that in general, predictions of the modified model agee more closely with experimental data than that of existing models.

  • PDF