• Title/Summary/Keyword: Interfacial energy

Search Result 629, Processing Time 0.036 seconds

Impact Characteristics and Morphology of Nylon 6/Polypropylene Blends (Nylon 6/Polypropylene 블렌드의 충격특성 및 모폴로지)

  • Kim, Jong-Guk;Yun, Ju-Ho;Go, Jae-Song;Choe, Hyeong-Gi;Kim, Sang-Uk
    • Korean Journal of Materials Research
    • /
    • v.12 no.1
    • /
    • pp.10-15
    • /
    • 2002
  • Melt blends of maleic anhydride grafted polypropylerle(PP-g-MA) and Nylon 6 were prepared to study the influence of chemical reaction between the two polymer components. By adding the MA grafted polystyrene pold (ethylene/butadiene) and polystyrene[SEBS-g-MA] as the compatible modifiers to reinforce the impact resistance, the Izod impact strength, high rate impact strength and morphology were studied. The notched Izod impact strength increased with the content of PP-g-MA and SEBS- g-MA. The energy of high rate impact strength increased as the thickness of specimen increased, while, it increased as the specimen displacement decreased. In the morphology observed by SEM, finally, we confirmed the improvement of the compatibilization and interfacial adhesion with the content of SEBS-g-MA. The continuous phase of PP-g-MA was the main cause of the modified properties.

Characteristics and Microstructure of Matrix Retaining Electrolyte in Phosphoric Acid Fuel Cell Prepared by Tape Casting (Tape Casting법으로 제조한 인산형 연료전지 전해질 매트릭스의 미세구조 및 특성)

  • 윤기현;허재호;장재혁;김창수
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.4
    • /
    • pp.375-380
    • /
    • 1994
  • Matrices retaining electrolyte in phosphoric acid fuel cell were prepared with SiC to SiC whisker mixing ratios of 1:0.5, 1:1, 1:1.5, 1:2, 1:3 by tape casting method. When viscosity of the slurry was 5.9 poise and the SiC to SiC whisker mixing ratios were 1:1, 1:1.5, 1:2, the ranges of porosity, acid absorbency and bubble pressure were 80~90%, 2.5~6 and 700~2200 mmH2O, respectively. Those ranges are acceptable for a practical electrolyte-retaining matrix. With increasing the mixing ratio of SiC whisker to SiC, the porosity and the vol.% of large pores in the main pore size distribution which is between 1 and 10 ${\mu}{\textrm}{m}$, increased rapidly. Impedance spectroscopy was measured to know characteristics of matrix inside and contact region of matrix to catalyst layer. When the SiC to SiC whisker mixing ratio was 1:2, hydrogen ions were transported in the matrix most effectively because of high ionic conductivity and low activation energy due to high acid absorbency in spite of high interfacial resistance. The cell current density of the cell made using the matrix was 220 mA/$\textrm{cm}^2$ at 0.7 V.

  • PDF

A study on the fabrication of SOI wafer using silicon surfaces activated by hydro (수소 플라즈마에 의해 표면 활성화된 실리콘 기판을 이용한 SOI 기판 제작에 관한 연구)

  • Choi, W.B.;Joo, C.M.;Lee, J.S.;Sung, M.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.3279-3281
    • /
    • 1999
  • This paper describes a method of direct wafer bonding using surfaces activated by a radio-frequency hydrogen plasma. The hydrogen plasma cleaning of silicon in the RIE mode was investigated as a pretreatment for silicon direct bonding. The cleaned silicon surface was successfully terminated by hydrogen, The hydrogen-terminated surfaces were rendered hydrophilic, which could be wetted by Dl water rinse. Two wafers of silicon and silicon dioxide were contacted to each other at room temperature and postannealed at $300{\sim}1100^{\circ}C$ in an $N_2$ atmosphere for 2 h. From the AFM results, it was revealed that the surface became rougher with the increased plasma exposure time and power. The effect of the plasma treatment on the surface chemistry was investigated by the AES analysis. It was shown that the carbon contamination at the surface could be reduced below 5 at %. The interfacial energy measured by the crack propagation method was 122 $mJ/m^2$ and 384 $mJ/m^2$ for RCA cleaning and hydrogen plasm, respectively.

  • PDF

In-Ladle Direct Thermal Control Rheocasting of A356 Al alloy (A356 Al 합금의 In-Ladle Direct Thermal Control Rheocasting)

  • Lee, Jin-Kyu;Kim, Young-Jig;Kim, Shae-K.;Jo, Hyung-Ho
    • Journal of Korea Foundry Society
    • /
    • v.25 no.6
    • /
    • pp.254-258
    • /
    • 2005
  • Semisolid process is possible in any material system possessing a freezing range where the microstructure should consist of the nondendritic globular solid phase separated and enclosed by the liquid phase, referred to as semisolid slurry. There are two primary semisolid processing routes, thixocasting and rheocasting. Especially, rheocasting process has become a new focus in the field of semisolid process because of its many advantages such as no special billet required and possibility of in-house scrap recycling, compared with the thixocasting process. In-Ladle direct thermal control (DTC) rheocasting has been developed, based on the fact that there is slurry and mush transition in every molten metal and the transition, which normally occurs in the range of liquid traction of 0.1 to 0.6, could be controlled by controlling solid shape and relative solid-liquid interfacial energy. In this study, A356 Al alloy was investigated to verify In-Ladle DTC rheocasting for obtaining semisolid slurry. Modeling of heat transfer was carried out to investigate the effect of pouring temperature and ladle material, geometry and temperature and the simulation results were compared with the actual experiments.

Mechanical Behaviors of CFRP Laminate Composites Reinforced with Aluminum Oxide Powder

  • Kwon, Oh-Heon;Yun, Yu-Seong;Ryu, Yeong-Rok
    • Journal of Power System Engineering
    • /
    • v.18 no.6
    • /
    • pp.166-173
    • /
    • 2014
  • In this study, a laminated composite material with dispersing aluminum oxide powder between the CFRP laminate plies, and also CFRP composites without aluminium oxide powder were fabricated for Mode I experiments using the DCB specimen and a tensile test. The behavior of the crack and the change of the interfacial fracture toughness were evaluated. Also in order to evaluate the damage mechanism for the crack extension, the AE sensor on the surface of the DCB test specimen was attached. AE amplitude was estimated for CFRP-alumina and CFRP composite. And the fracture toughness was evaluated by the stress intensity factor and energy release rate. The results showed that an unstable crack was propagated rapidly in CFRP composite specimen along with the interface, but crack propagation in CFRP-alumina specimen was relatively stable. From results, we show that aluminium oxide powder spreaded uniformly in the interface of the CFRP laminate carried out the role for preventing the sudden crack growth.

Support Effect of Catalytic Activity on 3-dimensional Au/Metal Oxide Nanocatalysts Synthesized by Arc Plasma Deposition

  • Jung, Chan Ho;Naik, B.;Kim, Sang Hoon;Park, Jeong Y.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.140.2-140.2
    • /
    • 2013
  • Strong metal-support interaction effect is an important issue in determining the catalytic activity for heterogeneous catalysis. In this work, we report the catalytic activity of $Au/TiO_2$, $Au/Al_2O_3$, and $Au/Al_2O_3-CeO_2$ nanocatalysts under CO oxidation fabricated by arc plasma deposition (APD), which is a facile dry process with no organic materials involved. These catalytic materials were characterized by transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS) and $N_2$-physisorption. Catalytic activity of the materials has measured by CO oxidation using oxygen, as a model reaction, in a micro-flow reactor at atmospheric pressure. Using APD, the catalyst nanoparticles were well dispersed on metal oxide powder with an average particle size (3~10 nm). As for catalytic reactivity, the result shows $Au/Al_2O_3-CeO_2$ nanocatalyst has the highest catalytic activity among three samples in CO oxidation, and $Au/TiO_2$, and $Au/Al_2O_3$ in sequence. We discuss the effects of structure and metal-oxide interactions of the catalysts on catalytic activity.

  • PDF

Transient cooling operation of multistage thermoelectric cooler (TEC)

  • Park, Jiho;Jeong, Sangkwon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.3
    • /
    • pp.55-59
    • /
    • 2021
  • A thermoelectric cooler (TEC) is promising as an alternative refrigeration technology for the sake of its inherent advantages; no-moving parts and refrigerant-free in its operation. Due to the compactness, reliability and excellence in temperature stability, TECs have been widely used for small cooling devices. In recent years, thermoelectric devices have been attractive technologies that not only serve the needs of cooling and heating applications but also meet the demand for energy by recycling waste heat. In this research paper, multistage TEC is proposed as a concept of demonstrating the idea of transient cooling technology. The key idea of transient cooling is to harnesses the thermal mass installed at the interfacial level of the stages. By storing heat temporally at the thermal mass, the multistage TEC can readily reach lower temperatures than that by a steady-state operation. The multistage TEC consists of four different sizes of thermoelectric modules and they are operated with an optimized current. Once the cold-part of the uppermost stage is reached at the no-load temperature, the current is successively supplied to the lower stages with a certain time interval; 25, 50 and 75 seconds. The results show the temperatures that can be ultimately reached at the cold-side of the lowermost stage are 197, 182 and 237 K, respectively. It can be concluded that the timing or total amount of the current fed to each thermoelectric module is the key parameter to determine the no-load temperature.

Tuning of Electro-optical Properties of Nano-structured SnO2:Ga Powders in a Micro Drop Fluidized Reactor

  • Lim, Dae Ho;Yang, Si Woo;Yoo, Dong June;Lee, Chan Gi;Kang, Yong
    • Korean Chemical Engineering Research
    • /
    • v.57 no.2
    • /
    • pp.259-266
    • /
    • 2019
  • Tuning of electro-optical properties of nano-structured $SnO_2:Ga$ powders in a micro drop fluidized reactor (MDFR) was highly effective to enhance the activities of powders to be used as sensor materials. The tuning was conducted continuously in a facile one-step process during the formation of powders. The microscopic hydrodynamic forces affected the band gap structure and charge transfer of $SnO_2:Ga$ powders through the oxygen and interfacial tin vacancies by providing plausible pyro-hydraulic conditions, which resulted in the decrease in the electrical resistance of the materials. The analyses of room-temperature photoluminescence (PL) spectra and FT-IR exhibited that the tuning could improve the surface activities of $SnO_2:Ga$ powders by adjusting the excitation as well as separation of electrons and holes, thus maximizing the oxygen vacancies at the surface of the powders. The scheme of photocatalytic mechanism of $SnO_2:Ga$ powders was also discussed.

Effect of Fe7W6 Phase (μ-phase) on Mechanical Properties of W-Ni-Fe Heavy Alloy (W-Ni-Fe 중합금의 기계적 특성에 미치는 Fe7W6상(μ-phase)의 영향)

  • Jeon, Yong Jin;Kim, Se Hoon;Kim, Young Do
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.9
    • /
    • pp.720-725
    • /
    • 2011
  • W-Ni-Fe heavy alloys have been used in various fields, such as kinetic energy penetrators and radiation shielding materials, due to their high density and good mechanical properties. In this study, the sintering of W-Ni-Fe alloys with various Ni/Fe ratios was demonstrated to improve the mechanical properties and penetration capabilities of heavy alloys by formation of interfacial phase. The microstructural changes and the mechanical properties of the W-Ni-Fe alloys after liquid-phase sintering were investigated. The Vickers hardness and tensile strength of the 95W1.3Ni3.7Fe sample, which had coated W grains by $Fe_7W_6$ phase (${\mu}$-phase), were 450 Hv and 1560 MPa, respectively. As a result, enhancement of the mechanical properties was considered to have uniformly generated ${\mu}$-phase around W grains.

Mechanical behavior and chloride resistance of cementitious composites with PE and steel fiber

  • Liao, Qiao;Guo, Zhen-wen;Duan, Xin-zhi;Yu, Jiang-tao;Liu, Ke-ke;Dong, Fang-yuan
    • Advances in concrete construction
    • /
    • v.12 no.6
    • /
    • pp.451-459
    • /
    • 2021
  • The mechanical behaviors and chloride resistance performance of fiber reinforced cementitious composites (FRCC) with hybrid polyethylene (PE) and steel fiber (in total 2% by volume) were investigated. Based on micro-mechanics and fracture mechanics, the reason why the tensile strain capacity of FRCC changed obviously was obtained. Besides, the effects of the total surface area of fiber in FRCC on compressive strength and chloride content were clarified. It is found that the improvement of the tensile strain capacity of FRCC with hybrid fiber is attributed to the growth of strain-hardening performance index (the ratio of complementary energy to crack tip toughness). As the total surface area of fiber related with the interfacial transition zone (ITZ) between fiber and matrix increases, compressive strength decreases obviously. Since the total surface area of fiber is small, the chloride resistance performance of FRCC with hybrid PE and steel fiber is better than that of FRCC containing only PE fiber.