• 제목/요약/키워드: Interfacial energy

검색결과 629건 처리시간 0.03초

The Interfacial Nature of TiO2 and ZnO Nanoparticles Modified by Gold Nanoparticles

  • Do, Ye-Ji;Choi, Jae-Soo;Kim, Seoq-K.;Sohn, Young-Ku
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권8호
    • /
    • pp.2170-2174
    • /
    • 2010
  • The surfaces of $TiO_2$ and ZnO nanoparticles have been modified by gold (Au) nanoparticles by a reduction method in solution. Their interfacial electronic structures and optical absorptions have been studied by depth-profiling X-ray photoelectron spectroscopy (XPS) and UV-vis absorption spectroscopy, respectively. Upon Au-modification, UV-vis absorption spectra reveal a broad surface plasmon peak at around 500 nm. For the as-prepared Au-modified $TiO_2$ and ZnO, the Au $4f_{7/2}$ XPS peaks exhibit at 83.7 and 83.9 eV, respectively. These are due to a charge transfer effect from the metal oxide support to the Au. For $TiO_2$, the larger binding energy shift from that (84.0 eV) of bulk Au could indicate that Au-modification site of $TiO_2$ is different from that of ZnO. On the basis of the XPS data with sputtering depth, we conclude that cationic (1+ and 3+) Au species, plausibly $Au(OH)_x$ (x = 1-3), commonly form mainly at the Au-$TiO_2$ and Au-ZnO interfaces. With $Ar^+$ ion sputtering, the oxidation state of Ti dramatically changes from 4+ to 3+ and 2+ while that (2+) of Zn shows no discernible change based on the binding energy position and the full-width at half maximum (FWHM).

Growth of ${\gamma}$-Al2O3 (111) on an ultra-thin interfacial Al2O3 layer/NiAl(110)

  • Lee, M.B.;Frederick, B.G;Richardson, N.V.
    • Journal of Korean Vacuum Science & Technology
    • /
    • 제2권2호
    • /
    • pp.63-77
    • /
    • 1998
  • The oxidation of NiAl(110) was investigated in the temperature regime between 300K and 1300 K using LEED (low energy electron diffraction), TPD (temperature programmed desorption) and HREELS (high resolution electron energy loss spectroscopy). The adsorption of N2O and O2 up to reconstructions. Stepwise annealing of the oxygen-saturated sample from 600 K to 1300K in UHV (ultra-high vacuum,) results in firstly the onset of randomly oriented then finally fairly well-ordered. 5 ${\AA}$ Al2O3 film with quasi-hexagonal periodicity. Ordered thicker oxide films of 18-30 ${\AA}$ seem to be grown on this interfacial oxide layer by direct oxidation of sample at elevated temperature between 1150 and 1300 K because of the LEED pattern consisting of new broad hexagonal spots and the previous 5 ${\AA}$ spots. Although the periodicity of surface oxygen arrays shows no significant change from an hexagonal close-packing, the O-O distance changes from ∼3.0 ${\AA}$ film to ∼2.9 ${\AA}$ for thicker oxides. with the appearance of Auger parameter, for the 5${\AA}$ film can be described better as an interfacial oxide layer. The observation of three symmetric phonon peaks can be also a supporting evidence for this phase assignment since thicker oxide films on the Same Ni2Al3(110) show somewhat different phonon structure much closer to that of the ${\gamma}$-Al2O3. The adsorption/desorption of methanol further proves the preparation of less-defective and/or oxygen-terminated Al2O3 films showing ordered phase transitions with the change of oxide thickness between 5 ${\AA}$ to 30 ${\AA}$.

  • PDF

충전재-탄성체 상호작용. 11. 상압플라즈마 처리가 나노구조의 실리카 표면특성에 미치는 영향 (Filler-Elastomer Interactions. 11. Influence of Atmospheric Pressure Plasma on Surface Properties of Nanoscaled Silicas)

  • 박수진;진성열;강신영
    • Elastomers and Composites
    • /
    • 제40권1호
    • /
    • pp.22-28
    • /
    • 2005
  • 본 연구에서는 실리카/고무 복합재료의 기계적 계면 물성과 열안정성에 대한 산소플라즈마의 영향에 대하여 살펴보았다. 실리카의 표면특성은 XPS와 접촉각 측정을 통하여 살펴보았다. 실리카/고무 복합재료의 기계적 물성과 열안정성은 각각 인열에너지 ($G_{IIIC}$)와 열중량분석(TGA)를 통하여 관찰하였다. 실험결과, 플라즈마 처리시간이 증가함에 따라 실리카 표면에 산소가 함유된 극성 관능기의 도입량이 증가하였으며, 이에 따라 고무 복합재료의 인열에너지와 열안정성이 향상되었다. 이러한 결과는 NBR과 같은 극성고무가 산소가 함유된 관능기가 도입된 실리카와 상대적으로 높은 상호작용을 하기 때문으로 판단된다.

Polyester직물에의 Hematite입자의 부착과 제거에 관한 계면전기적 고찰(제1보) -기질과 입자간의 상호작용에너지- (Interfacial Electrical Studies on Adhesion of Hematite Particle to Polyester Fabric and its Removal from the Fabric(Part I) -The interaction energy between particle and fabric-)

  • 강인숙;김성련
    • 한국의류학회지
    • /
    • 제17권3호
    • /
    • pp.380-390
    • /
    • 1993
  • Effect of interfacial electrical conditions on adhesion of ${\alpha}-Fe_2O_3$ particles to PET fabric and the removal of ${\alpha}-Fe_2O_3$ particles from PET fabric, were investigated as functions of pH, electrolyte and ionic strength. The ${\zeta}$ potential of PET fiber and ${\alpha}-Fe_2O_3$ particles in the electrolyte solution were measured by streaming potential and microelectrophoresis methods respectively. The potential energy of interaction between ${\alpha}-Fe_2O_3$ particles and PET fabric were calculated by using the heterocoagulation theory for a sphere-plate model. The negative ${\zeta}$ potential of ${\alpha}-Fe_2O_3$ particle and PET fiber increased with pH, and then decreased certain pH and isoelectric points of ${\alpha}-Fe_2O_3$ particles and PET fiber were pH 6.5 and pH 3.5, respectively. The negative ${\zeta}$ potential of ${\alpha}-Fe_2O_3$ particle and PET fiber affected by electrolytes, were relatively high with polyanion electrolytes in solutions and were low with neutral salts. However, at surfactant solution, ${\zeta}$ potential was levelled off. The influence of the ionic strength on the ${\zeta}$ potential of ${\alpha}-Fe_2O_3$ particle was small but the negative ${\zeta}$ potential of PET fiber increased with the ionic strength. In the presence of anionic surfactant, the ${\zeta}$ potential of ${\alpha}-Fe_2O_3$ particle and PET fiber increased regardless of solution conditions. The interaction energy between ${\alpha}-Fe_2O_3$ particle and PET fabric increased with pH. The interaction energy was relatively high with polyanion electrolytes in solution, and the influence of ionic strength on the interaction energy was small, and the effective thickness of electrical double layer increased with decreasing the ionic strength.

  • PDF

Interfacial Engineering of Graphenes for Energy and Biosensor Devices

  • Park, H.S.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.12-12
    • /
    • 2011
  • Interfacing functional materials with electrical or biological systems is of prime importance in terms of expanding applicative fields and obtaining high performances of devices. Herein, I report the functionalization of graphenes through supramolecular assembly and their electrochemical applications into fuel cells, supercapacitors, and biosensor devices. The solution processable nanohybridization of graphenes by functional materials such as ionic liquids, polyelectrolytes, block copolymers, and biomaterials, described herein would pave the way to obtain high performances of flexible energy and biosensor devices as well as to overcome the existing technology barriers.

  • PDF

미세 배선 적용을 위한 Ta/Cu 적층 구조에 따른 계면접착에너지 평가 및 분석 (Effect of Ta/Cu Film Stack Structures on the Interfacial Adhesion Energy for Advanced Interconnects)

  • 손기락;김성태;김철;김가희;주영창;박영배
    • 마이크로전자및패키징학회지
    • /
    • 제28권1호
    • /
    • pp.39-46
    • /
    • 2021
  • Cu 배선(interconnect) 적용을 위한 다층박막의 적층 구조에 따른 최적 계면접착에너지(interfacial adhesion energy, Gc) 평가방법을 도출하기 위해, Ta, Cu 및 tetraethyl orthosilicate(TEOS-SiO2) 박막 계면의 정량적 계면접착에너지를 double cantilever beam(DCB) 및 4-점 굽힘(4-point bending, 4-PB) 시험법을 통해 비교 평가하였다. 평가결과, Ta확산방지층이 적용된 시편(Cu/Ta, Cu/Ta/TEOS-SiO2)에서는 두 가지 평가방법 모두 반도체 전/후 공정에서 박리가 발생하지 않는 산업체 통용 기준인 5 J/㎡ 보다 높게 측정되었다. Ta/Cu 시편의 경우 DCB 시험에서만 5 J/㎡ 보다 낮게 측정되었다. 또한, DCB시험 보다 4-PB시험으로 측정된 Gc가 더 높았다. 이는 계면파괴역학 이론에 따라 이종재료의 계면균열 선단에서 위상각의 증가로 인한 계면 거칠기 및 소성변형에 의한 에너지 손실이 증가 하는것에 기인한다. 4-PB시험결과, Ta/Cu 및 Cu/Ta계면은 5 J/㎡ 이상의 높은 계면접착에너지를 보이므로, 계면접착에너지 관점에서는 Ta는 Cu배선의 확산방지층(diffusion barrier layer) 및 피복층(capping layer)으로 적용 가능할 것으로 생각된다. 또한, 배선 집적공정 및 소자의 사용환경에서 열팽창 계수 차이에 의한 열응력 및 화학적-기계적 연마 (chemical mechanical polishing)에 의한 박리는 전단응력이 포함된 혼합모드의 영향이 크므로 4-PB 시험으로 측정된 Gc와 연관성이 더 클 것으로 판단된다.

횡방향 하중을 받는 금속모재 복합재료의 파손구조 (Failure Mechanism of Metal Matrix Composites Subject to Transverse Loading)

  • 함종호;이형일;조종두
    • 대한기계학회논문집A
    • /
    • 제24권6호
    • /
    • pp.1456-1469
    • /
    • 2000
  • Mechanical behaviors of uniaxially fiber-reinforced metal matrix composites under transverse loading conditions were studied at room and elevated temperatures. A mono-filament composite was selecte d as a representative analysis model with perfectly bonded fiber/matrix interface assumption. The elastic-plastic and visco-plastic models were investigated by both theoretical and numerical methods. The product of triaxiality factor and effective strain as well as stress components and strain energy was obtained as a function of location to estimate the failure sites in fiber-reinforced metal matrix composite. Results showed that fiber/ matrix interfacial debond plays a key role for local failure at the room temperature, while void creation and growth in addition to the interfacial debond are major concerns at the elevated temperature. It was also shown that there would be an optimal diameter of fiber for the strong fiber-reinforced metal matrix composite.

Co/IrMn 이층막의 자기적 특성과 Co 두께 및 어닐링의 영향 (Effects of Thickness of Ferromagnetic Co Layer and Annealing on the Magnetic Properties of Co/IrMn Bilayers.)

  • 정정규;이찬규;구본흔;이건환;야스노리하야시
    • 한국재료학회지
    • /
    • 제13권7호
    • /
    • pp.447-452
    • /
    • 2003
  • Effects of annealing and thickness of Co layer in Co/IrMn bilayers on the magnetic properties have been investigated. The highest interfacial exchange coupling energy($J_{K}$ = 0.12 erg/$\textrm{cm}^2$) was obtained for 10 nm Co layer thickness. Exchange bias field is inversely proportional to the magnetization, the thickness of the pinned layer, and the grain size of antiferromagnetic layer. Also it is related to the interfacial exchange energy difference, which is expected to depend on the surface roughness. These results almost agree with the random-field model of exchange anisotropy proposed by Malozemoff. Exchange bias field decreased slowly with increasing annealing temperature up to X$300^{\circ}C$. However, exchange bias field increased above $300^{\circ}C$.

Nb 석출 거동을 고려한 저탄소강의 상변태 모델 (A model for Phase Transformation of Microalloyed Low Carbon Steel Combined with Nb Precipitation Kinetics)

  • 김동완;조훈휘;박시욱;김성환;김문조;이규영;한흥남
    • 소성∙가공
    • /
    • 제26권1호
    • /
    • pp.48-54
    • /
    • 2017
  • The dissolution and precipitation of Nb, which has been known as strong carbide-forming element, play a key role in controlling phase transformation kinetics of microalloyed steels. In this study, we analyzed both numerically and experimentally the precipitation behavior of Nb-microalloyed steel and its effect on the austenite decomposition during cooling. Nb precipitation in austenite matrix could be predicted by the thermo-kinetic software MatCalc, in which interfacial energy between precipitate and matrix is calculated. The simulated precipitation kinetics fairly well agrees with the experimental observations by TEM. Austenite decomposition, which is strongly affected by Nb precipitation during cooling, was measured by dilatometry and was modeled on the basis of a Johnson-Mehl-Avrami-Kolmorgorov(JMAK) equation. It was confirmed that the dissolved Nb delays the austenite decomposition, whereas, the precipitated Nb accelerates phase transformation during the austenite decomposition.