• Title/Summary/Keyword: Interfacial Treatment

Search Result 374, Processing Time 0.023 seconds

The Effect of Paint Baking on the Strength and Failure of Spot Welds for Advanced High Strength Steels (고강도 강판 저항 점용접부 강도 및 파단에 미치는 Paint Baking의 영향)

  • Choi, Chul Young;Lee, Dongyun;Kim, In-Bae;Kim, Yangdo;Park, Yeong-Do
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.12
    • /
    • pp.967-976
    • /
    • 2011
  • Conventional fracture tests of resistance spot welds have been performed without consideration of the paint baking process in the automobile manufacturing line. The aim of this paper is to investigate the effect of the paint baking process on load carrying capacity and fracture mode for resistance spot welded 590 dual phase (DP), 780DP, 980DP, 590 transformation in duced plasticity (TRIP), 780TRIP and 1180 complex phase (CP) steels. With paint baking after resistance spot welding, the l-shape tensile test (LTT) and nano-indentation test were conducted on the as-welded and paint baked samples. Paint baking increased the load-carrying capacity of the resistance spot welded samples and improved the fracture appearance from partial interfacial fracture (PIF) to button fracture (BF). Improvement in fracture appearance after LTT is observed on weldments of 780 MPa grade TRIP steels, especially in the low welding current range with paint baking conditions. The higher carbon contents (or carbon equivalent) are attributed to the low weldability of the resistance spot welding of high strength steels. Improvement of the fracture mode and load carrying ability has been achieved with ferrite hardening and carbide formation during the paint baking process. The average nano-indentation hardness profile for each weld zone shows hardening of the base metal and softening of the heat affected zone (HAZ) and the weld metal, which proves that microstructural changes occur during low temperature heat treatment.

Study on the Compositional Characteristics of the PCS Coating Layer by Curing Treatment for the Protection of Graphite Mold Surface (흑연 금형 표면 보호용 PCS 코팅층의 열경화에 의한 조성비 조절 특성 연구)

  • Kim, Kyoung-Ho;Lee, Yoonjoo;Shin, Yun-Ji;Jeong, Seong-Min;Lee, Myung-Hyun;Bae, Si-Young
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.6
    • /
    • pp.293-299
    • /
    • 2020
  • The characteristics of the polycarbosilane (PCS)-based composite ceramic layer was studied by controlling the curing temperature. The stress at the interface of the graphite and SiOC composite layer was evaluated v ia finite element analysis. As a result, the tensile stress was released as the carbon ratio of the SiC decreases. In experiment, the SiOC layers were coated on the VDR graphite block by dip-coating process. It was revealed that the composition of Si and C was effectively adjusted depending on the curing temperature. As the solution-based process is employed, the surface roughness was reduced for the appropriate PCS curing temperature. Hence, it is expected that the cured SiOC layer can be utilized to reduce cracking and peeling of SiC ceramic composites on graphite mold by improving the interfacial stress and surface roughness.

Development of Composite Bipolar Plate for Vanadium Redox Flow Battery (바나듐 레독스 흐름 전지용 복합재료 분리판 개발)

  • Lim, Jun Woo
    • Composites Research
    • /
    • v.34 no.3
    • /
    • pp.148-154
    • /
    • 2021
  • Carbon/epoxy composite bipolar plate (BP) is a BP that is likely to replace existing graphite bipolar plate of vanadium redox flow cell (VRFB) due to its high mechanical properties and productivity. Multi-functional carbon/epoxy composite BP requires graphite coating or additional surface treatment to reduce interfacial contact resistance (ICR). However, the expanded graphite coating has the disadvantage of having low durability under VRFB operating conditions, and the surface treatments incur additional costs. In this work, an excessive resin absorption method is developed, which uniformly removes the resin rich area on the surface of the BP to expose carbon fibers by applying polyester fabric. This method not only reduces ICR by exposing carbon fibers to BP surfaces, but also forms a unique ditch pattern that can effectively hold carbon felt electrodes in place. The acidic environmental durability, mechanical properties, and gas permeability of the developed carbon/epoxy composite BP are experimentally verified.

Development of Humidity Sensor Based on Ceramic/Metal Halide Composite Films for Non-Contact Biological Signal Monitoring Applications (비접촉 생체신호 모니터링 응용을 위한 세라믹/메탈 할라이드 복합막 기반 습도센서 개발)

  • Park, Tae-Ung;Kim, Ik-Soo;Kim, Min-Ji;Park, Chulhwan;Seo, Eui-kyoung;Oh, Jong-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.4
    • /
    • pp.412-417
    • /
    • 2022
  • Capacitive-type humidity sensors with a high sensitivity and fast response/recovery times have attracted a great attention in non-contact respiration biological signal monitoring applications. However, complicated fabrication processes involving high-temperature heat treatment for the hygroscopic film is essential in the conventional ceramic-based humidity sensors. In this study, a non-toxic ceramic/metal halide (BaTiO3(BT)/NaCl) humidity sensor was prepared at room temperature using a solvent-free aerosol deposition process (AD) without any additional process. Currently prepared BT/NaCl humidity sensor shows an excellent sensitivity (245 pF/RH%) and superior response/recovery times (3s/4s) due to the NaCl ionization effect resulting in an immense interfacial polarization. Furthermore, the non-contact respiration signal variation using the BT/NaCl sensor was determined to be over 700% by maintaining the distance of 20 cm between the individual and the sensor. Through the AD-fabricated sensor in this study, we expect to develop a non-contact biological signal monitoring system that can be applied to various fields such as respiratory disease detection and management, infant respiratory signal observation, and touchless skin moisture sensing button.

A Study on Water Contact Angle and Peel Strength by Anti- Adhesion Coating on Die Blade Materials for Adhesive Film Cutting (점착필름 절단용 다이 칼날 소재에 적용된 점착 방지 코팅의 물 접촉각 및 박리강도에 관한 연구)

  • Yujin Ha;Min-Wook Kim;Wook-Bae Kim
    • Tribology and Lubricants
    • /
    • v.39 no.5
    • /
    • pp.190-196
    • /
    • 2023
  • Anti-adhesion coatings are very important in the processing of adhesive materials such as optical clear adhesive (OCA) films. Choosing the appropriate release coating material for dies and tools can be quite challenging. Hydrophobic surface treatment is usually performed, and its performance is often estimated by the static water contact angle (CA). However, the relationship between the release performance and the CA is not well understood. In this study, the water CAs of surfaces coated with anti-adhesion materials and the peel strengths of the acrylic-based adhesive films are evaluated. STC5 and SUS304 are selected as the base materials. Base materials with different surface roughnesses are produced by hairline finishing, mirror-polishing, and end milling. Four fluoropolymer compounds, including a self-assembled monolayer, are selected to make the base surface hydrophobic. Static, advancing, and receding CAs are mostly increased due to the coating, but the CA hysteresis is found to increase or decrease depending on the coating material. The peel strengths all decreased after coating and are largely dependent on the coating material, with significantly lower values observed for fluorosilane and perfluoropolyether silane coatings. The peel strength is observed to correlate better with the static CA and advancing CA than with the receding CA or hysteresis. However, it is not possible to accurately predict the anti-adhesion performance based on water CA alone, as the peel strengths are not fully proportional to the CAs.

A study on the improvement of TiN diffusion barrier properties using Cu(Mg) alloy (Cu(Mg) alloy 금속배선에 의한 TiN 확산방지막의 특성개선)

  • 박상기;조범석;조흥렬;양희정;이원희;이재갑
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.2
    • /
    • pp.234-240
    • /
    • 2001
  • The diffusion barrier properties of TiN by using Cu(Mg) alloy film have been investigated. Cu(Mg) alloy film was deposited on air-exposed TiN film. Upon annealing, interfacial MgO of 100 $\AA$ has been formed due to the reaction of Mg with oxygen existed on the surface of TiN. Combined MgO/TiN structure prevented the interdiffusion of Cu and Si up to $800^{\circ}C$. To improve the adhesion of Cu(Mg) alloy film to the TiN, TiN layer was treated by $O_2$ plasma, followed by vacuum annealing at $300^{\circ}C$. It was found that increased oxygen on the surface of TiN film by plasma treatment enhanced segregation of Mg toward the interface, resulting in the formation of dense MgO layer. Improved adhesion characteristics have been formed through this treatment. However, increased power of $O_2$ plasma led to the formation of TiO$_2$ and decreased the Mg content to be segregated to the interface, resulting in the decrease in adhesion property. In addition, the deposition of 50 ${\AA}$ Si on the TiN enhanced the adhesion of Cu(Mg) alloy to TiN without deteriorating the TiN diffusion barrier characteristics.

  • PDF

Improving Charge Injection Characteristics and Electrical Performances of Polymer Field-Effect Transistors by Selective Surface Energy Control of Electrode-Contacted Substrate (전극 접촉영역의 선택적 표면처리를 통한 유기박막트랜지스터 전하주입특성 및 소자 성능 향상에 대한 연구)

  • Choi, Giheon;Lee, Hwa Sung
    • Journal of Adhesion and Interface
    • /
    • v.21 no.3
    • /
    • pp.86-92
    • /
    • 2020
  • We confirmed the effects on the device performances and the charge injection characteristics of organic field-effect transistor (OFET) by selectively differently controlling the surface energies on the contact region of the substrate where the source/drain electrodes are located and the channel region between the two electrodes. When the surface energies of the channel and contact regions were kept low and increased, respectively, the field-effect mobility of the OFET devices was 0.063 ㎠/V·s, the contact resistance was 132.2 kΩ·cm, and the subthreshold swing was 0.6 V/dec. They are the results of twice and 30 times improvements compared to the pristine FET device, respectively. As the results of analyzing the interfacial trap density according to the channel length, a major reason of the improved device performances could be anticipated that the pi-pi overlapping direction of polymer semiconductor molecules and the charge injection pathway from electrode is coincided by selective surface treatment in the contact region, which finally induces the decreases of the charge trap density in the polymer semiconducting film. The selective surface treatment method for the contact region between the electrode and the polymer semiconductor used in this study has the potential to maximize the electrical performances of organic electronics by being utilized with various existing processes to lower the interface resistance.

Synthesis of Silica Nanoparticles Having the Controlled Size and their Application for the Preparation of Polymeric Composites (크기가 제어된 실리카 나노입자 합성과 제조된 입자의 고분자계 복합재 응용)

  • Kim, Jong-Woung;Kim, Chang-Keun
    • Polymer(Korea)
    • /
    • v.30 no.1
    • /
    • pp.75-79
    • /
    • 2006
  • Silica nanoparticles for polymeric dental restorative composites were prepared by Stober method, and then the effects of surface treatment of silica particles with Lmethacrylofpropyltrimethofsilane $(\gamma-MPS)$ on the dispersity of the silica particles in the organic matrix was investigated. Particles having various average size were prepared by using controlled amounts of tetraethylorthosilicate(TEOS), water, and catalyst and by changing solvent used for reaction. The site of particles prepared by using methanol as solvent was smaller than that prepared by using ethanol as solvent. In addition, the size of particles was increased by decreasing amounts of water and by increasing amounts of TEOS and catalyst. Hydrophobic silica nanoparticles was prepared by reacting hydrophilic nanoparticles with $\gamma-MPS$ to improve interfacial properties with organic matrix. Amounts of $\gamma-MPS$ per unit mass of the particles was increased by decreasing particle size. even though the amount of $\gamma-MPS$ per specific surface area were nearly the same regardless of the particle size. The dispersity of the silica particles in the organic matrix was improved when the surface treated silica particles were used for preparing the polymeric dental restorative composites.

EFFECT OF SURFACE TREATMENTS OF FIBER POSTS ON BOND STRENGTH TO COMPOSITE RESIN CORES (섬유포스트의 표면 처리방법이 복합레진 코어와의 결합력에 미치는 영향)

  • Keum, Hye-Jo;Yoo, Hyun-Mi
    • Restorative Dentistry and Endodontics
    • /
    • v.35 no.3
    • /
    • pp.173-179
    • /
    • 2010
  • The purpose of the present study was to compare the influence of post-surface treatment with silane, hydrogen peroxide, hydrofluoric acid or sandblasting and to investigate the effect of silane in combination of the other treatments on the microtensile bond strength between fiber posts and composite resins for core build-up. Thirty-two glass-fiber posts (FRC Postec Plus, Ivoclar Vivadent, Schaan, Liechtenstein) were divided into eight groups according to the different surface pretreatments performed: silane application (S); immersion in 28% hydrogen peroxide (HP); immersion in hydrogen peroxide followed by application of silane (HP-S); immersion in 4% hydrofluoric acid gel (HF); immersion in hydrofluoric acid gel followed by application of silane (HF-S); sandblasting with aluminum oxide particles (SB); sandblasting followed by application of silane (SB-S). In control group, no surface treatment was performed. The composite resin (Tetric Flow, Ivoclar Vivadent, Schaan, Liechtenstein) was applied onto the posts to produce the composite cylinder specimen. It was sectioned into sticks to measure the microtensile bond strength. The data was analyzed with one-way ANOVA and LSD test for post hoc comparison (p < 0.05). Post pretreatment with sandblasting enhanced the interfacial strength between the fiber posts and core materials. Moreover, sandblasting followed by application of silane appears to be the most effective method that can improve the clinical performance of glass fiber posts.

Effect of mechanical surface treatment on the fracture resistance and interfacial bonding failure of Y-TZP zirconia (Y-TZP zirconia의 기계적 표면처리가 파절저항과 접착계면 실패에 미치는 영향)

  • Yi, Yang-Jin
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.30 no.2
    • /
    • pp.102-111
    • /
    • 2014
  • Purpose: Surface damage and bonding strength difference after micromechanical treatment of zirconia surface are to be studied yet. The aim of this study was to evaluate the difference of fracture resistance and bonding strength between more surface-damaged group from higher air-blasting particle size and pressure, and less damaged group. Materials and Methods: Disk shape zirconia ($LAVA^{TM}$) was sintered and air-blasted with $30{\mu}m$ particle size (Cojet), under 2.8 bar for 15 seconds, $110{\mu}m$ particle size (Rocatec), under 2.8 bar for 15 seconds, and $110{\mu}m$ particle size (Rocatec), under 3.8 bar for 30 seconds respectively. Biaxial flexure test and bonding failure load test were performed serially (n = 10 per group). For bonding test, specimens were bonded on the base material having similar modulus of elasticity of dentin with $200{\mu}m$-thick resin cement for tension of surface damage. Failure load of bonding was detected with acoustic emission (AE) sensor. Results: There were no significant differences both in the biaxial flexure test and bonding failure load test between groups (P > 0.05). Sub-surface cracks were all radial cracks except for two specimens. Conclusion: Within the limitations of no aging under monotonic load test, surface damage from higher air-blasting particle size and pressure was not significant. Evaluations of failure load with bonded zirconia disks was clinically relevant modality for surface damage and bonding strength, simultaneously.